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This paper presents a study of two statistical post-processing methods implemented on forecasts of Meteo-France 

temperatures provided by the ensemble prediction system (EPS) The results are useful in the management of electricity 

consumption at EDF France. Those methods are the Best-Member Method (BMM) proposed by Fortin (2006), and 

the Bayesian Model Averaging method (BMA) proposed by Raftery (2004). The idea behind the BMM is to design for 

each lead time in the data set the best forecast among all k forecasts provided by the temperature prediction system, to 

construct an error pattern using only the errors made by those "best members" and to then "dress" all the members of the 

initial prediction system with this error pattern. The BMA method is a statistical method which combines predictive 

distributions from different sources. The BMA predictive probability density function (PDF) of the quantity of interest is 

a weighted average of PDFs centered on the bias-corrected forecasts, where the weights are equal to posterior 

probabilities of the models generating the forecasts and reflect the accuracy (skill) of the models over the training period. 

The resulting forecasts implemented on our data set are compared with one another and compared to the initial forecasts, 

using scores which measure the accuracy and/or the spread of the EPS: the Mean Absolute Error (MAE), the Root 

Mean Square Error (RMSE), the Ignorance Score, the Continuous Rank Probability Score (CRPS), the Talagrand 

Diagram, the Bias and the Mean. The purpose is to improve the probability density function of the forecasts, preserving 

at the same time the quality of the mean forecasts. The presentation is accessible to readers with an intermediate level of 

statistics. 
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1. Introduction 
 

1.1  Context 
 

The energy sector is highly weather-dependent, hence it 

needs accurate forecasts to guaranty and optimize its  

 

 

 

 

activities. Predictions of production are needed to 

optimize the selling and distribution of electricity. Of 
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course needs inelectricity depend on meteorological 

conditions. 

 

Numerous specialists in physics (for example 

meteorologists) build sophisticated deterministic 

numerical models, with uncertainty on the input data. To 

take into account this uncertainty, they run the same 

model several times, with slight but non random 

perturbation of the data. It seems obvious that the results 

of physical models contain irreplaceable information. 

Nevertheless we notice that the probability distribution 

obtained from the model is typically not a perfect 

representation of the risk factor, thus we need to submit 

it to a statistical processing before using it. 

 

Correlation between temperature and electricity consumption 

 

Temperature is the main risk factor for EDF as an 

electricity producer in France, a country where electric 

heating is well developed. If we take into account the 

variability in temperature, the power consumed for 

heating on a winter given day can vary by about 20GW, 

which represents 40 % of the average consumption. 

Regarding energy, the climatic risk factor is 

quantitatively less important, because the difference 

in energy consumed between the warmest and the 

coldest winters represents approximately 5 % of the 

energy over the year.  

 

To explain the correlation between temperature and 

electricity consumption we note that the French 

electrical load is very sensitive to temperature because 

of the development of electric heating since the 70’s. 

The influence of temperature on the French load is 

mostly known, except for the impact of air conditioning 

whose trend remains difficult to estimate. Electric 

heating is used to maintain a temperature close to 

20° C  inside buildings.  

 

Taking into account the "free" contributions to heat 

(sun, human heat), it is considered that electric 

heating turns on a t  approximately below 1 6 ° C . 

Beyond that temperature, the heat loss being 

proportional to the temperature difference between 

inside and outside, the consumption increases 

approximately linearly. Moreover, since buildings take a 

certain amount of time to warm up or to cool down, the 

reaction to outside temperature variations is 

delayed.To take into account this delay, one uses a 

smoothed temperature (based on an "average" 

temperature) as a predictor of the consumption 

(Bruhns et al., 2005). The situation is similar for air 

conditioning. 

1.2  Purpose of the work 
 

This study has for objective to improve the 

probabilistic distribution of forecasts provided by the 

Ensemble Prediction Systems (EPS) of Meteo-France, 

while preserving the accuracy (skill) of the mean 

forecasts. The initial EPS contains k  = 51 members - 

scenarios of the same model - one starting with 

unperturbed initial weather conditions (the control 

forecasts) and 50 from perturbed initial conditions 

defined by adding small dynamically active 

perturbations to the operational analysis for the day. 

Each one of the 51 members of the studied EPS 

provides trajectories of temperatures for 14 time- 

horizons (1 horizon corresponds to 1 day). We 

implement statistical post-processing methods to 

improve its use for the management of  the electric 

system at EDF France. 

 

The use of the EPS method allows on the one hand to 

extend the horizon where we have good forecasts and 

on the other hand to give a measure of forecast 

uncertainty. Unlike deterministic solutions the 

probability forecast is better adapted to the analysis of 

risk and decision-making. 

 

First, we study the Meteo-France temperature forecasts 

and the temperature realizations in retrospective 

mode in order to establish the statistical link 

between these two variables. We then examine two 

statistical processing methods of the pattern’s 

outputs. From state of the art existing methods and 

from the results obtained by the examination of the 

probability forecasts, a post-processing module will be 

developed and tested. The goal is to achieve a robust 

method for calibrating statistical forecasts. This 

method should thus take into account the 

uncertainties of the inputs (represented by the 51 

different initial conditions added to the pattern). 

 

The first method is the Best-Member Method (BMM) 

and it has been proposed by Fortin et al. (2006). The 

idea is to design for each lead time in the data set the 

best forecast among all k forecasts provided by the 

temperature prediction system, to construct an error 

pattern using only the errors made by those "best 

members" and then to "dress" all the members of the 

initial prediction system with this error pattern. This 

approach fails in cases where the initial prediction 

systems are already over dispersed. This is the reason 

why a second method was introduced which allows 

dressing and weighting each member differently by 

classes of its statistical order. We present in this 

paper the second method, that we call W-BMM. 
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The second method we implement is the Bayesian 

Model Averaging (BMA) method proposed by Raftery 

et al. (2004). It is a statistical method for post 

processing model outputs which allows to provide 

calibrated and sharp predictive Probability 

Distribution Functions (PDFs) even if the output 

itself is not calibrated (forecasting are well calibrated 

if for a forecast with probability p, the predicted event 

is observed p times). The method allows for  using a 

sliding-window training period to estimate new models 

parameters, instead of using the w h o l e  database of 

past forecasts and observations. 

 

Results will be compared using scores which measure 

the skill and/or the spread of the EPS: Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), 

Ignorance Score, Continuous Rank Probability Score 

(CRPS), Talagrand Diagram, Reliability diagram, Bias, 

Mean. 

 
2. Ensemble prediction systems (EPS) 
 

Ensemble prediction systems are a rather new tool in 

operational forecasting which allows for  faster and 

scientifically justified comparisons of several forecast 

models. The EPS is conceived in order to yield the 

probability of meteorological events and the zone of 

inherent uncertainty in every planned situation. It is 

a technique to predict the probability distribution of 

forecast states, given a probability distribution of 

random analysis error and model error. 

 

The principle of the EPS is to run several scenarios 

of the same model with slightly different input data 

in order to simulate the uncertainty. In the current 

system Meteo-France is using, each EPS perturbation 

is a linear combination of singular vectors with 

maximum growth computed using a total energy norm. 

The assumption underlying the linear combination is 

that initial error is normally distributed in the space 

spanned by t h e  singular vectors. A Gaussian sampling 

technique is used to sample realizations from this 

distribution (IFS Documentation 2006). 

 

The EPS is based on the notion that forecast 

uncertainty is dominated by error or uncertainty in 

initial conditions. This is consistent with studies that 

show that, when two operational forecasts differ, the 

differences tend to or ig inate in the analyses rather 

than in model formulation see (IFS Documentation 

2002). 

 

We note some of the primary objectives of EPS 

(Mallet 2008): 

1. Allows for  estimating the uncertainty, obtaining 

a representative spread of the typical uncertainty, 

ensuring an empirical standard deviation of the 

forecasts comparable with the standard deviation of 

the observations; 

 

2. Provides a good estimation of the probability of 

an event; 

 

3. Allows for a convenient use of linear combinations 

of models in forecast. 

 
3. Verification methods for EPS 
 

Meteorologists have been using EPS for several years 

now and at the same time many methods for 

evaluating their performances have been developed 

(Stanski et al. 1989). A proper scoring rule maximizes 

the expected reward (or minimizes the expected 

penalty) for forecasting one’s true beliefs, thereby 

discouraging hedging or cheating (Jolliffe and 

Stephenson 2007). One can distinguish two types of 

methods: the ones permitting to evaluate the quality 

of the spread and the ones giving a score (a numerical 

result) permitting to evaluate the performance of the 

forecasts (Petit 2008). 

 

Therefore, we need to examine the skill or accuracy 

(how close the forecasts are to the observations) and 

spread or variability (how well the forecasts represent 

the uncertainty). If model errors played no role, and 

if initial uncertainties were fully included in the EPS 

initial perturbations, a small spread among the EPS 

members would be an indication of a very predictable 

situation i.e. whatever small errors there might be in 

the initial conditions, they would not seriously affect 

the deterministic forecast. By contrast, a large spread 

indicates a large uncertainty of the deterministic 

forecast (Persson 2003). As for the skill, it indicates 

the correspondence between a given probability, and 

the observed frequency of an event. Statistical 

considerations suggest that even for a perfect 

ensemble (one in which all sources of forecast error 

are sampled correctly) there may not be a high 

correlation between spread and skill (Whitaker and 

Loughe 1998). 

 
3.1  Standard Statistical Measures 
 
Let y be the vector of model outputs and let o be 

the vector of the corresponding observations. These 

vectors both have n components. Their means are 

respectively y  and o . 
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The Bias is given by: 
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The Correlation Coefficient is given by:  
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The Mean Absolute Error (MAE) measures overall 

accuracy and is defined as:  
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The root mean square error (RMSE) has the 

advantage of being recorded in the same unit as the 

observations and it is the root square of the MSE where 

MSE is given by
2
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3.2  Reliability 
 
The reliability (or spread) measures how well the 

predicted probability of an event corresponds to its 

observed probability of occurrence. For a p

probability forecast, the predicted event should be 

observed ( )round p  times. 

 

Talagrand Diagram. It is a type of bar chart in which 

categories are represented by bars of varying ranks 

rather than specific values - a histogram of ranks. The 

Talagrand diagram has its origins in the Probability 

Integral Transform diagram (PIT, see Dordonnat and 

Collet 2010). It measures how well the spread of the 

ensemble forecast represents the true variability 

(uncertainty) of the observations. For each period 

(day) we consider the ensemble of the forecasts values 

(including the observation value). The values within 

this ensemble are ordered and the position of the 

observation is noted (the rank). For example the rank 

will be 0 if the observation is below all the forecasts 

and N if the observation is above all the forecasts. 

Repeating the procedure for all the forecasts we obtain 

a histogram of observation ranks. By examining the 

shape of the Talagrand diagram, we can draw 

conclusions on the bias of the overall system and the 

adequacy of its dispersion: 

 

 A flat histogram: the ensemble spread correctly 

represents forecast uncertainty. It does not 

necessarily indicate a skilled forecast but only 

measures whether the observed probability 

distribution is well represented by the ensemble. 

 

 A U-shaped histogram: the ensemble spread too 

small, so that many observations fall outside the 

extremes of the ensemble 

 

 A Dome-shaped histogram: the ensemble spread is 

too large, so that too many observations fall near 

the center of the ensemble 

 

 Asymmetric histogram: the ensemble contains bias. 

 
3.3  Resolution (sharpness) 
 

The resolution (or accuracy, or skill) is the measure of 

the accuracy of the forecasts. 

 

Continuous Rank Probability Score (CRPS). The 

CRPS measures the difference between the forecast 

and observed cumulative distribution functions 

(CDFs). The CRPS compares the full distribution with 

the observation, where both are represented as 

CDFs. If F  is the CDF of the forecast distribution 

and x  is the observation, the CRPS is defined as: 

 
2

( , ) ( ) 1CRPS F x F y y x dy





      (4) 

 

where  1 y x  denotes a step function along the real 

line that attains the value 1 if y x and the value 0 

otherwise. In the case of probabilistic forecasts the 

CRPS is a probability-weighted average of all possible 

absolute differences between forecasts and observations. 

The CRPS tends to increase with forecast bias and be 

reduced by the effects of the correlation between 

forecasts and observations (Schaake et al. 2007).  

 

One of its advantages is that it has the same units as 

the predicted variable (so is comparable to the MAE) 

and does not depend on predefined classes. It is the 

generalization of the Brier score for the case of the 

continuous variables. The CRPS provides a diagnostic of 

the global skill of an EPS, the perfect CRPS is 0, a 
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t 

higher value of the CRPS indicates a lower skill of the 

EPS. 

 
4. Post-processing methods 
 
4.1  The Best-Member method 
 
The Best-Member Method was proposed by V.Fortin et 

al. (2006) and improves on studies previously led by 

Roulston and Smith (2002) then by Wang and Bishop 

(2005). The idea is to design for each lead time in the 

data set the best forecast among all 51 forecasts (in our 

case), to construct an error pattern using only errors 

made by those "best members" and to then "dress" all 

members with this error pattern. This approach does 

not work in cases where the undressed ensemble 

members are already over- or under-dispersed; the 

solution is then to weigh and dress each member 

differently, that is using a different error distribution 

for each order statistic of the ensemble. So we can 

distinguish two specialized methods: the one with 

constant dressing, or the “un-weighted members” 

method and the one with variable dressing, or the 

“weighted members” method. We implement and 

present in this paper the Weighted Members Method 

(W-BMM). 

 

4.1.1  The Weighted Members Method 
 

Fortin applied this method on a synthetic EPS (where 

the EPS was built under certain conditions - ensemble 

members are independent and identically 

distributed - and where we can vary the parameters 

we want in order to test different hypotheses or 

methods). He observed that this method failed in the 

case of over-dispersed or under-dispersed EPS. The 

explanation is that when an EPS is under-dispersed, 

the outcome often lies outside the spread of the 

ensemble. Hence, an extreme forecast has a  much 

more chance of giving the best prediction than a 

forecast close to the ensemble mean. Conversely, when 

an ensemble is over-dispersed members close to the 

ensemble mean have a much higher chance to be best 

members than extreme forecasts. Hence, the 

probability that an ensemble member gives the best 

forecast as well as the error distribution of the best 

member depends on the distance to the ensemble 

mean. For univariate forecasts we can sort ensemble 

members from the smallest to the biggest, note theirs 

ranks and consider the rank of a member at the 

dressing sequence. 

 

Let , ,t k jx be the temperature predictions provided by a 

given EPS, where k is the scenario’s number, t  is the 

time for which the forecast is made and j  is the time-

horizon. The method is presented in the univariate 

case so j  is fixed, hence 
, ,t k jx becomes 

,t kx . 

 

Let 
ty be the unknown variable which is forecasted at 

time t, and let 
t t,X { , 1,2,...,  K}k k x  be the set of 

all ensemble members of the forecasting system. Given 

tX the purpose is to obtain a probabilistic forecast 

i.e. ( | )t tp y X in order to provide many more 

predictive simulations sampled from ( | )t tp y X  

where 
t t,mX { ,m 1,2,...,  M} x  with M  K . 

 

The concept of conditional probability allows for 

incorporating additional information into the forecasts 

(in this case it will be the forecasts given by Meteo 

France). 

 

The basic idea of the method is to "dress" each 

ensemble member 
,t kx with a probability distribution 

equal to that of the error made by this member when 

it happened to give the best forecast. The best 

scenario denoted by x
* 

is defined as the one 

minimizing .|| ||t t ky x  for a given norm || . || . As we 

are working in a univariate space, the norm is the 

absolute value so that: 
 

,

*

t t,k  arg  min | |
t kt  xx y x . 

 

Let: 

 

 
,( )t kx  be the k th member of the ensemble 

t,kX    { ,k 1,2,...,  K}t  x  ordered by rank. 

  ( ) ,( ) , 1,2,..,k t t t t k t T      y x x x  be the 

errors of the best ensemble members for every time 

t in a database of past forecasts, where the best 

forecast has rank k . 

 kp  be the probability that 
t,(k)x is the best member, 

i.e   [ ]k t t,(k)p Pr  x x . 

 

To dress each ensemble member differently, instead of 

resampling from the archive of all best-member errors, 

one resamples from ( )k 
to obtain dressed ensemble 

members. Hence, the simulated forecasts are obtained 

as: 
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   t,k,n t, k t, k ,n
  ·  y x  (5) 

 

where: 

 

 the εt,(k),n are drawn at random from 
( )k 

, 

 

 n  is the number of simulations per time step, 
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estimated variance of the best-member error. 

 

This computation fails in the case of EPSs where the 

uncertainty is already over estimated (
2s negative). 

 

4.2  Bayesian model averaging 
 

The Bayesian approach is based on the fact that the 

probability of realization of an event does not 

depend only on its frequency of appearance but also 

on the knowledge and experience of the researcher. 

 

We base our study on the Bayesian Model Averaging 

method (BMA) (Raftery et al. 2004). The BMA 

predictive probability density function (PDF) of the 

quantity of interest is a weighted average of PDFs 

centered on the bias-corrected forecasts, where the 

weights are equal to the posterior probabilities of the 

models generating the forecasts, reflecting the models 

skill over the training period. 

 

An original idea in this approach is to use a moving 

training period (sliding-window) to estimate new 

models parameters, instead of using the whole 

database of past forecasts and observations. This 

implies a choice of length for this sliding-window 

training period; the principle guiding this choice is that 

probabilistic forecasting methods should be designed 

to maximize sharpness subject to calibration. It is an 

advantage to use a short training period in order to be 

able to adapt rapidly to changes (since weather 

patterns and model specification change over time) 

but the longer the training period, the better the 

BMA parameters are estimated (Raftery et al. 

2004). After comparing measurements such as the 

RMSE, the MAE, the CRPS for various training period 

lengths (from 10 to 60) Raftery et al. conclude that 

there are substantial gains in increasing the training 

period to up to 30 days, and that beyond that there 

is little gain. The main difference between their case 

and ours is that they have 5 models and we have 51 

(scenarios).  

 

Let
Ty be the quantity to be forecasted and 

1 KM , ..., M    be K  statistical models providing 

forecasts. According to the law of total probability, 

the PDF of the forecasts p(y)  is given by: 

 

 
1

) )
K

T

k k

k

p y  = p(y | M p(M | y


  (6) 

 

where )kp(y | M  is the forecast PDF based on 
kM  

and )T

kp(M | y  is the posterior probability of model 

kM  being correct given the training data which a 

measure of whether the model fits the training data. 

 

The sum of all k posterior probabilities corresponding to 

the k models is 1: 
1

)=1 
K T

kk
p(M | y

 . 

 

This allows us to use them as weights, so to define the 

BMA PDF as a weighted average of the conditional 

PDFs. This approach uses the idea that there is a best 

"model" for each prediction ensemble but it is 

unknown. Let fk the bias-corrected forecast provided 

by the model Mk which yields the best prediction, 

corresponding to a PDF k kg (y | f ) . The BMA 

predictive model then is given by: 

 

1

K

1 k k k k

k

p(y | f , .., f ) = w g (y | f )


  (7) 

 

where 
kw  is the posterior probability of forecast k  

being the best one and is based on forecast k ’s 

performance in the training period and where 

K

kk=1
w  = 1 . For temperature and sea- level pressure, 

the conditional PDF can be fitted reasonably well using 

a normal distribution centered at a bias-corrected 

forecast k k ka +b f  as shown by Raftery et al. (2004): 

 

2

k k k ky | f   N(a   b f , )   

 

The parameters k ka ,b  as well as the kw    are to be 

estimated on the basis of the training data set: ka  and 

kb  by simple linear regression of ty  on ktf  for the 
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training data and 
kw  , k  = 1, .., K , and σ by maximum 

likelihood (Aldrich 1997) from the training data. For 

algebraic simplicity and numerical stability reasons it is 

more convenient to maximize the logarithm of the 

likelihood function rather than the likelihood function 

itself;  the expectation-maximization (EM) algorithm 

(Dempster et al. 1977) is used. 

 

Finally the BMA PDF is a weighted sum of normal 

PDFs and the weights kw  reflect the overall 

performance of the ensemble members over the training 

period, relative to other members. 

 

5. Application 

 
5.1  Data description 

 
We are working on temperature forecasts provided by 

Meteo-France as an ensemble of weather prediction 

systems which contains 51 members, or 51 

equiprobable scenarios obtained by running the same 

forecasting model with slightly different initial 

conditions. 

 

The data set corresponds to the period between March 

30 2007 and 20 of April 20 2011 and contains forecasts 

up to 14 time-horizons corresponding to 14 days (1 

horizon corresponds to 24 hours). Currently the value 

used to predict the consumption is the mean of the 51 

forecasts. In Figure 1, on top we represent for three 

fixed time-steps the curves of the prediction errors for 

the 51 scenarios as a function of time-horizon (from 1 

to 14-days ahead).  

 

The errors typically increase with the time-horizon; 

they are particularly small up to the 4th time-

horizon. Hence, we consider that up to the 4th time-

horizon the  deterministic forecasts give high quality 

forecasts and we implement our improvement 

methods starting with the 5th horizon. In the same 

figure, on the bottom, we can see the prediction 

e rrors  for all periods but for three different time-

horizons; we notice the same typical correlation 

between the errors and the time-horizon. 

 

As mentioned above every scenario, among the 51, 

gives forecasts up to 14-days ahead. The difference 

between the scenarios comes from the small 

dynamically active perturbation added to their initial 

conditions.  

 

Hence this perturbation is not related to the name 

of the scenario (numbers between 0 and 50) and is 

not the same from one day of forecasting start to 

another 
1
. 

 

The temperature measurements are performed by 26 

different French stations, of which we take a 

weighted average to obtain a single temperature for 

France. The weights are defined so as to best explain 

electricity consumption for  different French regions. 

 

We start by setting the time-horizon. Once the 

horizon is fixed, we study the forecasts, starting with 

5-days ahead horizons since up to 4-days ahead the 

determinist forecasts are very good (the Meteo-France 

pattern is purposely built to be under- dispersed up to 

3 days). In this paper we present the 5-days ahead 

results. We can see in Figure 2 superposed on the 

same graph the curve of the realizations and the 

curve of the average predicted temperatures. 

 

5.2  Implementation of the weighted Best-
Member method 
 

Let ty be the temperature variable we are forecasting at 

time t  and let t t,kX ={x ,k = 1,2,..., K} be the set of 

all ensemble members of the Meteo-France forecasting 

system. We would like to obtain a probabilistic forecast 

i.e. t tp(y | X ) . The conditional probability allows for 

taking into account additional information in a forecast, 

in our case the forecasts given by Meteo-France. The 

best scenario 
t


x  is the one minimizing t| | .t,ky x  

 

 

To compute the  W-BMM method we use the SAS 

software. We use a cross-validation method to build 

and test our models: we divide the four years in our 

data set into two equal parts: the first part serves as a 

model building period for the model we will validate 

on the second part and vice versa.  

 

As mentioned in the presentation of the method, the 

statistical rank of the ensemble members is taken into 

account. We denote the kth forecast by  ,t k
x  and recall 

that
   ,

 { | ,   1,2,  ,  ...,  }t t tk t k
y t T      x x x as 

defined above (see 4.1.1). 

 

                                                           
1
 For example: forecasts given by scenario 15 computed on July 

1st for the period July 1st-July 7th take into account from the 

beginning a certain perturbation. That perturbation will 

not be the same as the one taken into account by scenario 15 

when on July 2nd it provides forecasts for the period July 2nd-

July 8
th

. 



 

 
Figure 1. Figures corresponding to initial predictions. On top, prediction error curves for the 51 scenarios for three fixed 

days, for all 14 time-horizons (in gray are scenario errors from 1 to 51, in black scenario 0 - the one with no perturbed 

initial conditions - and in red the mean of the 51 scenarios). At the bottom are the forecasting errors for three different 

time-horizons; we can see the errors become larger with the time-horizon. 
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Figure 2. Graphs corresponding to initial predictions for 5-days ahead. In black is the observed temperatures curve, in 

blue the initial prediction means. We notice a good precision of the mean forecasts except for extreme temperatures. 

 

Given the archive of past forecasts and a norm we create 

a probability distribution from the realizations of

 = y  - x :*

(k) t t,(k)  

 

prev prev(t) = (t) + exp( (t))N(0, 1)(k)    (8) 

 

where: 

 
 t is the time-step, 

 the
prev   µ are the values of the errors, 

pred icted  by a linear regression model M
1
 as 

described below, 

 the 
  prev are the logarithms of the absolute 

values of the residuals from the M
2
 pattern, 

predicted b y  a linear regression model M
2
 as 

described below, 

 the statistical rank does not interfere directly at 

this stage of the study but interferes indirectly in 

the creation of the M
1
 and M

2
 patterns.  

 
The M

1
 pattern explains the prediction error with 

the initial forecast, the day-position within the year 

and the statistical rank τt : 

 

   
3

prev 1 2, 3, 4

1

   · [ ·a ·b ] .t i i t

i

µ i i    


   x       (9) 

 

The M
2
 pattern explains the logarithm of the absolute 

value of the residuals from the M
1
 pattern i.e. 

prev , 

with the temperature, day-position within the year 

and the statistical rank τt : 

 

   
3

prev 1 2, 3,   4

1

  · [ .a ·b ] ·t i i t

i

i i     


   x     

(10) 
 

We therefore also have two parameters 
prevµ   (predicted 

by the M1 pattern) and 
prev  (predicted by the M2 

pattern). Both are generated b y 7 parameters: 

1 2,i 3,i, ,       for prevµ   (i = 1, 2, 3) 

 

and 
1 2,i 3,i, ,      for prev  (i = 1, 2, 3). Both have 

the same length as the studied period – 1,459. As 

mentioned above we use them as parameters of the 

normal distribution to simulate our new forecasts. We 

want to obtain M=10 × K=10 x 51=510 simulations 

so  we will draw Nk = pk × M dressed ensemble 
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members from each ( )t, kx  . This way classes with 

posterior probabilities of giving better forecasts will be 

simulated more than classes with small such 

probabilities: 

 

   t,k,n t, k t, k ,n
 y    x                                           (11) 

where    [   ]k t t,(k)p Pr   x x  is the probability that 

( )t, kx gives the best forecasts among the K=51 scenarios. 

 

 
Figure 3. Probability intervals (10%-90%) for the 510 daily simulations (in red), their median (in green) and the curve 

with realizations (in blue) for a one-year period. We note on this graph that the median of the simulations lies in the 

[10%, 90%] interval. 

 

 

Figure 4. BMA method. CRPS and MAE for 5-days ahead for different lengths of the training period, from 10 to 50, by 5-

day steps. 
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In Figure 3 we can observe the median of simulated 

forecasts, the real temperatures curve and the 10% 

- 90% probability interval for the simulated 

forecasts . The curve of the forecasts we simulated is 

still not perfectly close to the curve of observations. It 

is interesting to observe on that graph whether the 

real temperatures curve always lies within the 10% - 

90% interval. Other results of the tests verifying skill 

and spread are presented in Section 6. 

 

5.3  Implementation of the Bayesian Model 
Averaging method 
 

Applying the Bayesian Model Averaging method 

consists in constructing the BMA PDF as a weighted 

sum of normal PDFs, where the weights reflect the 

overall performance of the ensemble members over the 

training period. To implement this method we use an 

R package for probabilistic forecasting, ensemble BMA 

created by Fraley et al. (2009) using ensemble post 

processing via Bayesian Model Averaging to provide 

functions for modeling and forecasting data. When we 

construct the Bayesian model we consider that 

forecasts ensemble members are interchangeable 

(because of the independence of the forecast 

scenarios, see section 2) that is, their forecasts can 

be assumed to come from the same distribution. 

 

The first and an important step in this method is to 

choose the length of the training period. We are looking 

for a good compromise. The advantage of a short 

training period is that it is able to adapt rapidly to 

changes (since weather patterns and model 

specification change over time). The advantage of a 

longer training period is that the BMA parameters 

are better estimated. We compare measurements 

such  as the Mean Absolute Error (MAE) and the 

Continuous Ranked Probability Score (CRPS) for 

different training period lengths (from 10 to 60 days, 

by 5 or 10 day steps). 

 

The values of CRPS and the values of the MAE 

corresponding to different lengths of the training 

period are given in Figure 4. We notice that the two 

curves are alike; the CRPS decreases from 1.0 (10 days) 

to 0.73 (60 days) and the MAE decreases from 4.2 (10 

days) to 1.5 (50 days) and then increases again to 3.1 

at 60 days. A 50-days training period is chosen. 

 

Once we have decided on the length period we 

construct the pattern that fit those data, so that we 

can obtain the new forecasts system and the 

corresponding probabilities. Scores are calculated in 

the next section to decide on the spread and skill of 

the BMA forecasts. 

 

6. Comparison of the methods by means of the 
criteria 

 

To compare the quality of the forecasts provided by the 

statistical post processing methods considered here, 

we use some of the criteria presented earlier in this 

paper. We compare three types of scores: standard 

measures, reliability scores and resolution scores for 

the initial forecasts, un-weighted forecasts from the 

best member method, weighted forecasts from the 

best member method and the forecasts obtained with 

the Bayesian Model Averaging method. 

 
6.1  Standard Measures 
 
Bias: We compare the bias for the initial forecasts and 

the bias for the forecasts obtained by the three 

methods (see Table 1). A perfect score is 1. Scores 

obtained for all three methods are 1, showing good 

forecasts but we note that it is possible to get a perfect 

score for a bad forecast if there are compensating 

errors. 

 

Correlation Coefficient: The R
2

 we obtain for two of 

the methods has values very close to 1: 0.96 for the 

Bayesian forecasts and 0.97 for the W-BMM forecasts 

(see Table 1). Since a perfect correlation coefficient is 

1 our scores show a good correlation between 

observations and forecasts. The correlation coefficient 

for the initial predictions is 0.99 so the degree of 

correlation is not lost after post processing the 

forecasts. 

 

Root mean square error (RMSE): The RMSE’s values 

for two of the methods show small model errors. 

Nevertheless the RMSE for the initial forecasts is 

smaller than the RMSE for the forecasts we simulated 

by W-BMM (see Table 1), and the BMA RMSE is 

even larger. One possible explanation would be that 

the RMSE is influenced more by large errors rather than 

small errors. 

 

From the point of view of standard measures, the 

forecasts we created have predictive qualities almost as 

good as the initial predictions. 

 

Me a n  absolute error (MAE): The smaller the MAE, 

the better. When we compare the MAE for the initial 

forecasts and the MAE for the forecasts obtained by the 

other two methods, we find a larger value for the W-
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BMM: 1.30 and even larger for the BMA 1.53 (see 

Table 1). Hence, post processing the forecasts by these 

two methods slowly increases the MAE, as well as the 

RMSE. Nevertheless those are good values of the 

MAE. 

 

Table 1. Values of the standard measures for the three 

methods. 

Forecasts Bias 
R

2
 

RMSE(°C ) MAE CRPS 

Initial 1 0.99 1.14 0.88 0.63 

W-BMM 1 0.97 1.74 1.18 0.63 

Bayesian 1 0.96 1.90 1.52 0.75 

 

6.2  Reliability criteria 
 

Talagrand diagram: For the initial system of forecasts for 

5-days ahead, the rank histogram is given in Figure 5a. 

We notice an asymmetric U-shaped histogram meaning 

that the ensemble spread is too small (under-dispersive) 

with many observations falling outside the extremes of 

the ensemble. The EPS is under-dispersive, so the 

uncertainty is under estimated. The rank histogram of the 

ensemble obtained by the Best Member Weighted 

Method has a rather flat shape – the ensemble spread 

correctly represents forecast uncertainty (see Figure 5b) 

but we notice that the extremes ranks are not so well 

represented. The rank histogram of the ensemble 

obtained by the BMA Method is given in Figure 5c. We 

still notice a U-diagram, but more symmetrical than the 

BMM one. 

 

a. Initial Predictions b. W-BMM weighted  c. BMA 

Figure 5. Comparison of the Talagrand Rank Diagrams of the two methods and with the initial predictions 

 

6.3  Resolution Criteria 
 

Continuous rank probability score (CRPS): The CRPS 

measures the difference between the forecast and 

observed CDFs. The values of CRPS for the two methods 

calculated for the entire studied period are given in Table 

1. Those are good values, knowing that the perfect CRPS 

is 0, proving a high skill of the new created EPS. The 

CRPS of the W-BMM forecasts is as good as the one of 

the initial predictions. 

 

7. Conclusion 
 

The objective of this paper was to extend the number of 

simulated forecasts of temperature (the 51 per day) 

provided by Meteo-France and still have a forecasting 

system with a good quality (spread and skill) that will be 

useful for the management of the electric system at EDF 

France.  

 

Up to the 4th time horizon (1 horizon corresponds to 1 

day) the deterministic forecasts give high quality forecasts 

so we tried to improve forecasts beyond this time-horizon. 

Therefore we examined two methods of statistical 

processing of the pattern’s outputs which take into 

account the uncertainties of the inputs (represented by 

the 51 different initial conditions added to the pattern). 

We studied their implementation on the data-set 

provided by Meteo-France. It contains forecasts for the 

March 30 2007 - April 20 2011 period. There are 51 

values of forecasts for 14 time-horizons. We studied 

separately several horizons-time, starting with the 5-days 

ahead horizon (the study of the 5th horizon presented in 

the current article). We want to improve the probability 

density function of the forecasts, preserving at the same 

time the quality of the mean forecasts. 

 

The first method is the Best-Member method proposed by 

Fortin et al. (2006). The idea is to design for each lead 

time in the data set the best forecast among all k forecasts 

provided by the temperature prediction system, to 

construct an error pattern using only the errors made by 

those "best members" and to then "dress" all the members 

of the initial prediction system with this error pattern. 

This method allows us to extend the number of simulated 

temperatures. We presented here the case where the 
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ensemble members are dressed and weighed differently by 

classes of its statistical order. 

 

The second method we have implemented is the Bayesian 

Model Averaging method proposed by Raftery et al. 

(2004). It is a statistical method for post processing model 

outputs which allows for providing calibrated and sharp 

predictive PDFs even if the output itself is not calibrated. 

The method uses a sliding-window training period to 

estimate new models parameters, instead of using the 

whole database of past forecasts and observations. 

 

Reliability and resolution are the attributes that 

determine the quality of a probabilistic prediction system. 

Therefore, comparing EPS (three in our case, including 

the initial system) involves comparing scores which 

measure the skill and the spread. 

 

From the spread point of view there is significant 

improvement of the distribution when using the method 

W-BMM. The Ranks Histogram of the initial EPS shows 

under-dispersion and a cold and hot bias (see Figure 5) 

and the Ranks Histogram of the BMA maintains the 

same shape, but the Ranks Diagram for the W-BMM is 

rather flat, although there is a small effect on the extreme 

ranks that might be corrected by using a different 

modeling approach for the extreme values of the forecasts.  

 

From the skill point of view, the Bayesian Method gives 

less good results than the initial predictions (see the 

CRPS, RMSE, MAE values in Table 1). The W-BMM 

method has a better (smaller) CRPS but the RMSE and 

MAE are larger. So from the spread point of view we can 

say that the quality of the initial prediction system is 

preserved but not improved. 

 

The results we obtained are convenient, considering the 

objective: increasing the number of forecasts for 

improving the distribution of the Ensemble Prediction 

System, without losing the precision of its mean forecasts. 

The next step is to build a mixture model using the W-

BMM for the center of the distribution and Generalized 

Extreme Value (GEV) models for the tails of the 

distribution. 
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