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The aim of this paper is to illustrate sensitivity methods using experimental designs. These techniques are used to deal 

with simulation models or experimental programs involving a large number of controllable factors. In these cases, one of 

the objectives is the identification of the subset of factors that have substantial influence on the responses. In this paper 

we provide a review of different screening methods that are useful in eliminating negligible factors so that efforts may be 

concentrated upon just the important ones. These different methods are described and are applied on a simulation model 

in the petroleum industry involving 51 parameters. The comparison of the results is presented with the advantages and 

disadvantages for each method. The presentation is accessible to readers with an intermediate level of statistics. 
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Introduction 
 

In the last decade, several disciplines within scientific 

research and industry have used simulation codes in order 

to forecast, to optimize and to make good decisions in the 

context of their studies. These codes which simulate 

complex phenomena, often badly known and sometimes 

coupled between themselves, are increasingly realistic 

and, even if the means of calculation are powerful, the 

computer time could be expensive: a simulation run may 

sometimes requires several days of computation. 

Moreover, these codes take into account a very large 

number of parameters and many questions remain  

 

 

unanswered, such as the detection of influential 

parameters corresponding to a screening study, or the 

study of the impact of small variations in the parameters 

often called "sensitivity analysis" (Azarian and al. 2011).  

 

To answer these questions, one must find an effective 

strategy that is as cheap as possible but reliable. It seems 

obvious that the field of experimental designs, which 

guides the choice of the best informative experiments, 

can find a new potential by its transposition to the field of 

"numerical experiments". Thus, the objective of this study 
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is to test on a real application different screening 

methodologies, with different number of simulations, and 

to compare them. 

 

In the following section, six screening strategies are 

presented: 

 

 Resolution III Hadamard design 

 Resolution IV Hadamard design 

 Supersaturated design 

 Group screening 

 Multiple group screening 

 Sequential bifurcation 

 

Before presenting the different methods, we provide more 

details about the case study. 

 

1. Illustrative example 
 

1.1. Formalization 
 

A phenomenon can be considered as a black box, 

characterized by: 

 

 variables of environment,uenv, generally badly 

known and numerous, 

 variables of control, ucont, which can be fixed by 

the user, 

 variables of interest, yreal, often called response, 

with the relation: 

 

),( contenvrealreal uufy   

 

The function freal is usually approximated by a simulator 

and in this context a new class of parameters is added, 

the simulation parameters usim which can parameterize, 

and eventually adjust the simulator.  

 

1.2. General framework 
 

The present case study is based on the use of a flow 

simulator in porous media and concerns an oil field 

produced by nine wells, five of them being producers and 

four injectors.  

 

The system is solved by the technique of streamlines. The 

responses are multiple and are functions of time: in the 

study in this paper, only the cumulative oil production at 

a fixed time (2000 days) is considered.  

 

The objective of the study is to simulate as precisely as 

possible the behavior of the reservoir. The data file is 

complex and contains several hundreds or thousands of 

parameters, but only 51 of them, noted U
1
, U

2
 ..., U

51
, 

may vary in this study, taking into account different types 

of variables: 

 

 environment variables, such as fluid or rock 

properties (porosity, permeability...) 

 control variables, such as location of the wells or 

injection or production constraints (flow and/or 

pressure), 

 simulation variables, such as the number of 

streamlines considered in the pressure solver. 

 

These variables may vary within their range of 

uncertainties and the question is then: 

 

"What is the impact of a small change in input data on 

the response of the simulator?" 

 

In other words, we want to identify parameters for which 

a small variation yields a variation in the response. This 

type of study corresponds to the goal of a screening study 

that can be defined as a strategy to very quickly identify 

active factors among many candidate factors. 

 

2. Screening methods 

 

As previously mentioned, at the beginning of a study, we 

generally do not know which factors have an influence on 

the studied responses and we want to identify, among a 

large number of potentially significant factors, those 

which are effectively active within a fixed experimental 

domain. This objective falls within the screening 

strategies, which depend on the "effect sparsity" 

assumption that says that only a few factors are 

responsible for most of the effect in a response while most 

are not. This is equivalent to the Pareto rule used in 

quality studies. These screening methods are very useful 

tools for examining simulation models that involve a 

large number of factors (Barton, 2001; Kleijnen, 2004; 

Sanchez and al., 2005; Welch and al., 1992). This 

screening stage should involve a minimum number of 

experiments, and should not take much computing time.  

 

2.1. Screening designs 
 
2.1.1. Hadamard RIII et RIV 
 

The most well-known screening designs for estimating 

the additive (first order) mathematical model are the 

Hadamard or Plackett and Burman designs (1946). A 

Hadamard design is a weighing experimental design 

which contains only elements x
ij
 equal to 1 

corresponding to the two studied levels and for which the 

resulting information matrix X’X is such that (X’X) = N 
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I
N
 with X the model design, X’ the transpose matrix of X, 

N the number of simulations and I
N 

the identical design. 

 

These Hadamard designs exist when N is a multiple of 4 

(N = 4, 8, 12, 16, 20, 24, ...). In this set of designs we can 

consider two subsets: designs where N is a power of 2 (N 

= 4, 8, 16,...), called regular designs, and non-regular 

designs where N is a multiple of 4 but not a power of 2 (N 

= 12, 20, 24, 28, 36, ...). In the case of regular designs, 

each interaction effect is totally confounded with one of 

the main effects. For non-regular designs, the aliasing is 

different: the X
i
X

j
 interaction effect is partially 

confounded with all of the main effects except those of X
i
 

an X
j
. Therefore, with these designs, the risk of drawing a 

wrong conclusion is reduced, even if some interaction 

effects exist. In our case, we want to study 51 factors in 

order to determine those which are influential. For that, 

we can use a two-level Hadamard design with 56 

experiments. This is a non-regular design, where the 

interaction effects are partially aliased with the main 

effects: the coefficients of aliasing between interaction 

and main effects are 0.43 or 0.14. Taking into account 

the size of the table (51 columns and 56 rows), the 

experimental design can not be presented in this article 

but is available as a MS Excel file along with the article. 

 

This design, with N = 56 experiments, is a resolution III 

screening design. It is possible to generate a resolution IV 

design by operating a mirror-image foldover: it is obtained 

by reversing the signs of all the columns of the original 

matrix. The original design runs are combined with the 

mirror-image foldover design runs and this combination 

leads to a R
IV

 design, with 2N experiments, where the 

main effects are free of all first-order interactions and 

confounded only with second-order interactions.  

 

2.1.2. Supersaturated designs 

 

A supersaturated design is a design for which there are 

fewer runs than effects to be estimated. Firstly developed 

in the 1950's by Satterthwaite (1959) as a random 

balance and Booth and Cox (1962) in a systematic 

manner, these designs have recently become increasingly 

popular.  

 

Many authors have proposed methods for constructing 

and analysing supersaturated designs (Beth and al., 1999; 

Butler et al., 2001; Catterjee and Gupta, 2003; Cheng, 

1997; Claeys-Bruno and al., 2009, 2011; Deng et al., 

1999; Yamada and Lin, 1997; Lin, 1993, 1995; Liu and 

Hickernell, 2002; Liu and Dean, 2004, Lu and Meng, 

2000, Nguyen, 1996; Tang and Wu, 1997; Wu, 1993). 

The most well-known method proposed by Lin in 1993 

consists in considering a non-regular Hadamard design, 

H
N
, with N experiments, allowing to study up to (N-1) 

factors. The design H
N
 can be written differently by 

considering one of the columns of the design, called the 

branching column, and by grouping the N experiments 

into two groups: a group (H
1
) with a + sign in this 

column and a second group (H
2
) with a – sign in this 

column. Using this notation, the Hadamard design can be 

written as follows: 

 

   [
   
    

] 

  

 branching column 

 

If we consider H
1
 or H

2
, we obtain designs with N/2 rows 

and (N-2) distinct columns, called supersaturated designs 

allowing the study of up to (N-2) factors in N/2 

experiments. 

 

In this particular case, we selected column 55 in the 

Hadamard design with N = 56 as the branching column; 

the rows with -1 in this column provide a supersaturated 

design allowing the study of 51 factors in 28 experiments.  

 

2.1.3. Group screening (Dorfman, 1943; Finucan, 
1964; Hunter and Mezaki, 1964; Patel, 1962) 
 

Watson (1961) suggested an alternative idea by grouping 

factors into a smaller number of groups and treating each 

group of factors as a "factor" which is called a grouped 

factor to distinguish it from the original factors. A much 

smaller design can then be used to study the grouped 

factors. First, the experimenter must use experience and 

knowledge of the problem to arrange the factors into 

logical groups. A grouped factor is said to be at its "high" 

level if each of its individual factors is at a level that gives 

a higher response. Analogously, a group is at its "low" 

level if each individual factor gives a lower response. An 

adequate design is then run on the groups. The results of 

the first stage are analyzed and used to establish the 

second stage; this screening method is iterative. Upon 

identification of important grouped factors in the first 

stage, the factors within these groups are separated into 

smaller groups (multiple stage procedure) or individual 

factors (2-stage procedure) and a new design on the 

subgroups is run until the active factors are identified.  

 

This method can lead to a strategy with few experiments 

but requires important assumptions to ensure that the 

effect of a grouped factor is significant if and only if the 

effect of at least one of its factors is significant. 

Furthermore, all the factors of the groups with a non-

significant effect are eliminated at the first stage. 
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Moreover, the levels of each factor are chosen so that the 

effects, if the factor is active, are positive. 

 

Since the method is iterative, the different steps will be 

explained in the following section ("Results").  

 

2.1.4. Multiple group screening (Morris, 1987) 
 

Sequential group screening methods may be operationally 

impractical, for example, when the execution of each run 

requires substantial time but many runs can be executed 

simultaneously. In the multiple group procedure, each 

factor is assigned to more than one group at the first step 

and a factor is potentially influential if all groups 

containing this factor are active. The individual factors 

followed up in the second stage are those for which all 

types of groups are active. 

 

2.2. Sequential bifurcation 

 

Sequential bifurcation (SB) is a group-screening 

technique proposed by Bettonvil (1990) in 1990 and 

developed by Bettonvil and Kleijnen (1997). 

 

The Sequential Bifurcation (SB) procedure is sequential: 

it consists of a sequence of steps. 

 

The first step aggregates all factors into a single group and 

tests whether or not that group has an important effect by 

comparing the two extreme factor combinations: all 

factors low and the other one, all factors high. If the 

group has indeed an important effect, then the second 

step splits the group into two subgroups – bifurcates – and 

tests each of these subgroups for importance. SB analysis 

compares the new observation with two old observations, 

to infer the two sums of the effects in the two smaller sub-

subgroups. 

 

The next steps continue in a similar way: SB splits active 

subgroups into smaller subgroups and discards non active 

subgroups. It is clear that at the end of the bifurcation 

individual factor effects are estimated. 

 

The most important assumption used by the SB, as in all 

group-screening techniques, is that the experimenter 

knows whether a specific individual factor has a positive 

or negative effect on the response: the factor effects must 

have known signs.  

 

3. Results and interpretation 
 

3.1. Classical study 
Scientists often perform one-factor-at-a-time (OFAT) 

experiments, which vary only one factor or variable at a 

time while keeping others fixed. In our case, the OFAT 

method needs one simulation for each level for all 

variables, so 102 simulations. The results are presented 

on Figure 1. 

 

 
Figure 1. OFAT results 
 
3.2. Screening designs 
 
3.2.1. RIII and RIV Hadamard designs 
 
The 56 and 112 simulations of the experimental designs 

of R
III

 and R
IV

 respectively, have been achieved using the 

simulator and we have the production at 2000 days ×10
-3

 

for each experiment. 

R
III 

Hadamard design:
 

We postulate that the result of each experiment (η = 

production 2000 days ×10
-3

) is a linear combination of 

the effect of each coded variables X
1
, X

2
, ... , X

51
. A first 

order polynomial model for the 51 variables is proposed. 

This model is a “model of the model simulation” and is 

often called a meta model. It is valid only for the 2 levels 

of the factors, and therefore cannot be used for any 

interpolation or extrapolation. 

 

51513322110 ... XXXX    

 

We can then estimate the model coefficients b
i
 using 

multiple linear regression. It is expected that the large 

effects, whether positive or negative, are the statistically 

significant ones. We can use various statistical 

tools(Mathieu et al, 2007) for identifying active factors 

which are commonly used such as Daniel's plots (Figure 

2) where the probability P of the occurrence of some 

values b
i
 is plotted against b

i
. Most of the points appear to 

lie on a straight line, corresponding to non-significant 

effects, and6 points deviate from it corresponding to the 

active factors U
13

, U
45

, U
3
, U

6
, U

11 
and U

18
. 
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(a) 

 

(b) 

Figure 2. Daniel's plots for the response "production at 2000 

days 10
-3

" for the Hadamard R
III

 design (a) Effects values b
i
 

and (b) absolute effects values b
i
 have been plotted on 

normal probability paper. 

 
R

IV 
Hadamard design: 

 

The same statistical tools have been used in order to 

determine active factors with the resolution IV 

Hadamard design. The coefficient values can be 

represented on an effects plot (Figure 3) where 

magnitudes and signs of each effect of the variables are 

shown. For more readability, only the twenty most 

important effects have been reported on this figure. A 

significant limit could be calculated by Lenth’s method 

(1989). This graph shows that the factors U
13

, U
45

, U
3
, 

U
6
, U

11 
and U

18 
are the most important for the production 

at 2000 days. 

 

 

Figure 3. Effects plot for the response "production at 2000 

days10
-3

"for the Hadamard R
IV

 design. The importance 

(coefficient values b
i
) of each input factor x

i
 is proportional 

to the length of the bar. (Only the first twenty values have 

been reported). The significance limits are drawn as 

horizontal continuous lines. Only factors whose effects are 

clearly outside this limit are considered as influential. 

 

The results confirm the influence of the factors U
13

, U
45

, 

U
3
, U

6
, U

11 
and U

18
. 

 

3.2.2. Supersaturated designs 
 
Standard methods for analysing data, such as multiple linear 
regression, cannot be used in the case of supersaturated 
designs since the least squares estimates are not unique. 
There is no way to estimate all the main effects 
simultaneously. In this example, we can use a combination 
of a stepwise regression and an all subsets selection 
procedure as proposed by Abrahamand Chipman (1999) but 
the high number of factors makes the conventional all-
subsets regressions infeasible. We have applied a strategy 
developed by Lu and Wu (2003) in 2003and more recently 
modified by R. Phan-Tan-Luucalled sequential approach 
(Celaand al., 2007). In a first step, the stepwise regression 
reported in Figure 4a clearly shows that five variables are 
sufficient to obtain an R

2
 greater than 0.90. So, in can be 

anticipated that the number of active factors is probably not 
higher than 5.  
 

 
Figure 4. a) Stepwise regression up to nine variables and b) 

graphs of s
2

, AIC and BIC 

 

Number of variables

Five variables 

R2=0.90

Number of variables

Five variables 

R2=0.90

Number of variables Number of variables Number of variablesNumber of variables Number of variables Number of variables

a)

b)
Number of variables

Five variables 

R2=0.90

Number of variables

Five variables 

R2=0.90

Number of variables Number of variables Number of variablesNumber of variables Number of variables Number of variables

a)

b)



Regression with 2 variables 

Var Var  s
2
.10

-12
 R

2
 

b3       b13      1.35 0.65 

b13      b45      1.54 0.60 

b13      b33      1.67 0.57 

b7       b13      1.83 0.53 

b13      b44      1.85 0.52 

b13      b40      1.85 0.52 

b13      b34      1.86 0.52 

b13      b39      1.87 0.52 
  

 

Regression with 3 variables  

Var Var Var  s
2
.10

-12
 R

2
 

b3       b13      b45      0.76 0.814 

b3       b13      b33      1.20 0.707 

b3       b7       b13      1.25 0.696 

b13      b33      b45      1.30 0.682 

b3       b13      b44      1.34 0.673 

b3       b13      b40      1.34 0.673 

b3       b13      b50      1.36 0.667 

b3       b6       b13      1.39 0.661 
 

 

 

Regression with 4 variables  

Var Var Var Var  s
2
.10

-12

 R
2
 

b3       b6       b13      b45      0.52 0.878 

b3       b13      b33      b45      0.61 0.857 

b3       b7       b13      b45      0.71 0.834 

b3       b13      b44      b45      0.73 0.829 

b3       b13      b40      b45      0.74 0.827 

b3       b13      b45      b50      0.75 0.824 

b3       b13      b14      b45      0.78 0.818 

b3       b13      b39      b45      0.79 0.815 
  

 

Regression with 5 variables 

Var Var Var Var Var  s
2
.10

-12

 R
2
 

b3       b6       b13      b33      b45      0.36 0.918 

b3       b6       b7       b13      b45      0.48 0.893 

b3       b6       b13      b44      b45      0.51 0.885 

b3       b6       b13      b14      b45      0.51 0.884 

b3       b6       b13      b45      b46      0.52 0.883 

b3       b6       b13      b40      b45      0.52 0.883 

b3       b6       b13      b34      b45      0.52 0.883 

b3       b6       b13      b45      b50      0.53 0.881 
 

 

 

 

Regression with 6 variables 

Var Var Var Var Var Var  s
2
.10

-12

 R
2
 

b3       b6       b7       b13      b33      b45      0.34 0.927 

b3       b6       b13      b33      b44      b45      0.35 0.926 

b3       b6       b13      b33      b40      b45      0.35 0.924 

b3       b6       b13      b33      b45      b46      0.36 0.922 

b3       b6       b13      b33      b34      b45      0.36 0.922 

b3       b6       b13      b33      b45      b50      0.36 0.922 

b3       b6       b13      b14      b33      b45      0.37 0.921 

b3       b6       b13      b33      b39      b45      0.38 0.919 
 

 

 

 

Regression with 7 variables 

Var Var Var Var Var Var Var  s
2
.10

-12

 R
2
 

b3       b6       b7       b13      b33      b44      b45      0.30 0.937 

b3       b6       b7       b13      b33      b40      b45      0.31 0.936 

b3       b6       b13      b14      b33      b44      b45      0.32 0.935 

b3       b6       b7       b13      b33      b45      b50      0.33 0.933 

b3       b6       b13      b33      b40      b44      b45      0.33 0.932 

b3       b6       b7       b13      b33      b34      b45      0.34 0.931 

b3       b6       b13      b33      b44      b45      b46      0.34 0.930 

b3       b6       b13      b33      b44      b45      b50      0.34 0.930 
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Figure 5. All subset regressions for f=2 to f=7 variables. The first column of the table gives the name of the selected 

variables in each model and the corresponding values of R
2

 and s
2

 for the eight best solutions. The second column shows the 

mapping of the selected variables where the presence of the variables is marked with a blue square. The third column shows 

the s
2

 evolution for a fixed number of variables, corresponding to different models, numbered 1 to 8, with s
2

 increasing. 

 
The study of BIC (Bayesian Information Criterion) 

(Schwarz, 1978) and AIC (Akaike's Information 

Criterion) (Akaike, 1974) values can also be used to 

interpret the results of the supersaturated design in order 

to determine the number of necessary variables in the 

model. 

 

Figure 4b shows the evolution of s
2
 (residual variance), 

AIC and BIC in terms of the number of variables in the 

model. These graphs confirm that the number of active 

factors is probably not higher than five. 

 

Therefore, the second stage involves all subsets 

regressions for a number of factors (f) from two to five. 

Figure 5 summarizes the values of R
2
 and s

2
 of the 

different models for each value of f. 

 

These values yield unequivocal results: five factors (U
13

, 

U
45

, U
3
, U

6
 and U

33
) are detected as active with an R

2
 

value equal to 0.92 and s
2
 value equal to 3.610

11
. The 

addition of a supplementary variable in the model (f=6) 

does not change the values of the R
2
 and s

2
significantly, 

which allows us the selection of the model with 5 

variables. 

 

3.2.3. Group screening 
 

First, the experimenter must use knowledge of the 

problem to organize the factors into logical groups. The 

experimenter attributes a probability upon the possible 

influence: 1 corresponds to a small probability and 2, to a 

large probability. Factors where no knowledge is available 

will be studied alone (a group with one factor). Table 1 

summarizes the attribution of the levels (the level + 

chosen as increasing the response), the probability a priori 

proposed by the experimenters and the construction of 

the groups. 

 

Table 1. Factors, probability a priori, groups 

 (-) (+) Proba Group   (-) (+) Proba Group 

U
1
 0.95 1.0 1 G

1
  U

27
 76 78 1 G

3
 

U
2
 0.95 1.0 2 G

7
  U

28
 11 9 1 G

3
 

U
3
 0.5 1.5 2 G

7
  U

29
 62 60 1 G

3
 

U
4
 0.011 0.0090 2 G

7
  U

30
 34 36 1 G

4
 

U
5
 1.02 0.98 1 G

1
  U

31
 11 9 1 G

4
 

U
6
 1.2 0.8 2 G

7
  U

32
 59 71 1 G

4
 

U
7
 48 42 ? G

9
  U

33
 42 61 1 G

4
 

U
8
 0.065 0.075 ? G

10
  U

34
 2000 6000 ? G

14
 

U
9
 61 65 ? G

11
  U

35
 2550 2450 1 G

4
 

U
10

 0.35 0.25 2 G
7
  U

36
 2500 1500 1 G

5
 

U
11

 0.29 0.15 2 G
8
  U

37
 1000 2000 1 G

5
 

U
12

 1.05 0.95 1 G
1
  U

38
 700 1300 1 G

5
 

U
13

 2 0.6 2 G
8
  U

39
 3000 2000 1 G

5
 

U
14

 0.23 0.17 ? G
12

  U
40

 700 1300 1 G
5
 

U
15

 3500 3700 ? G
13

  U
41

 2000 3000 1 G
6
 

U
16

 11 9 1 G
1
  U

42
 2500 3500 1 G

6
 

U
17

 71 69 1 G
1
  U

43
 3500 4500 1 G

6
 

U
18

 48 66 2 G
8
  U

44
 4500 5500 1 G

6
 

U
19

 78 70 2 G
8
  U

45
 3500 4500 2 G

8
 

U
20

 16 14 1 G
2
  U

46
 3500 4500 ? G

15
 

U
21

 38 36 1 G
2
  U

47
 4500 5500 ? G

16
 

U
22

 26 28 1 G
2
  U

48
 700 1300 ? G

17
 

U
23

 15 13 1 G
2
  U

49
 4500 5500 ? G

18
 

U
24

 63 61 1 G
2
  U

50
 700 1300 ? G

19
 

U
25

 21 19 1 G
3
  U

51
 3000 2000 1 G

6
 

U
26

 46 44 1 G
3
       

 

For the study of these 19 grouped factors, a non-regular 

Hadamard design with 20 experiments was constructed, 

as shown in Table 2. 

 

Table 2. Hadamard design with 20 experiments 

N°Exp G
1
 G

2
 G

3
 G

4
 G

5
 G

6
 G

7
 G

8
 G

9
 G

10
 G

11
 G

12
 G

13
 G

14
 G

15
 G

16
 G

17
 G

18
 G

19
 

1                   

2                   

3                   

4                   

5                   

6                   

7                   

8                   

9                   

10                   

11                   

12                   

13                   

14                   

15                   

16                   

17                   

18                   

19                   

20                   

 

A small explanation is necessary in order to understand 

the reading of this design. For example, run n° 1 is 

described by conditions for grouped factors which are: 

 

N°Exp G
1
 G

2
 G

3
 G

4
 G

5
 G

6
 G

7
 G

8
 G

9
 G

10
 G

11
 G

12
 G

13
 G

14
 G

15
 G

16
 G

17
 G

18
 G

19
 

1                   
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This run is characterized by conditions for each factor 

which are: 

 G
1 

G
2 

G
3 

G
4
  

      

N°Exp X
1
 X

5
 X

12
 X

16
 X

17
 X

20
 X

21
 X

22
 X

23
 X

24
 X

25
 X

26
 X

27
 X

28
 X

29
 X

30
 X

31
 X

32
 X

33
 X

35
 … 

1                     … 

 

From the results of the 20 simulations, an estimation of 

the coefficients was obtained; the interpretation of the 

results reveals 2 active groups (G
7
, G

8
) and according to 

the group screening method, the10 factors within these 

groups (U
2
, U

3
, U

4
, U

6
, U

10
, U

11
, U

13
, U

18
, U

19
, U

45
) are 

individually studied in the second step with an Hadamard 

design involving 12 experiments. 

 

From this screening design, the estimation of the 

coefficients (b
1
, b

2
, ..., b

10
)was obtained and the Bayesian 

approach (Bernardo and Smith, 1994) (Figure 6) shows a 

non-influence of the factors U
2
, U

4
, U

10
 and U

19
; the 6 

others variables can be classified on order of 

importance:U
13

, U
45

, U
3
, U

6
, U

11
 and U

18
. 

 

 

Figure 6. Bayesian plot for the response "production at 2000 

days10
-3

" for the Hadamard design in 12 experiments in the 

second step of the group screening method. 

 
3.2.4. Multiple Group screening 
 
In the first stage, the 51 factors were grouped into 7 

groups of type 1 (G
1
, G

2
, ... , G

7
) and 7 groups of type 2 

(H
1
, H

2
, .... H

7
) such that the intersection of any group of 

type 1 with any group of type 2 contains one factor, 

except for the intersection G
6
/H

6
 and G

7
/H

7
with 2 

factors. This arrangement is depicted graphically in Table 

3. 

 

To study the type-1 groups (G) and the type-2 groups (H), 

two Hadamard designs with 8 experiments were 

performed. The interpretation of the results reveals 3 

active type-1 groups (G
1
, G

2
 and G

3
), containing 21 

factors and 2 active type-2 groups (H
2
 and H

3
), containing 

14 factors. The factors retained for the second stage are 

those for which the two types of groups are apparently 

active: U
3
, U

4
, U

12
, U

13
, U

19
 and U

45
. 

 

In the second stage, the 6 factors are individually studied 

with a non-regular Hadamard design in 12 experiments. 

The estimation of the effects of these factors (b
1
, b

2
, ... , 

b
6
) are obtained and the effect plot (Figure 7) reveals 3 

active factors: U
3
, U

13
 and U

45
. 

 
Table 3. Arrangement of the multiple groups 
 7 groups of type 1 

   G
1
  G

2
  G

3
  G

4
  G

5
  G

6
  G

7
  

                 

 H
1
  U

2
  U

18
  U

11
  U

10
  U

29
  U

35
  U

40
  

                 

 H
2
  U

3
  U

19
  U

13
  U

28
  U

30
  U

36
  U

41
  

                 

7 groups 
H

3
  U

4
  U

45
  U

12
  U

27
  U

31
  U

37
  U

42
  

                 

of type 2 
H

4
  U

6
  U

1
  U

16
  U

26
  U

32
  U

38
  U

43
  

                 

 H
5
  U

17
  U

5
  U

24
  U

25
  U

33
  U

39
  U

51
  

                 

 H
6
  U

49
  U

20
  U

23
  U

7
  U

9
  

U
34 

U
44

 
 U

46
  

                 

 H
7
  U

50
  U

21
  U

22
  U

8
  U

14
  U

15
  U

47
U

48
  

                 

 
 
 

 
Figure 7. Effects plot for the response "production at 2000 

days × 10
-3

" for the Hadamard design in 12 experiments in 

the second step of the multiple group screening method. 
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3.3. Sequential bifurcation 
 
The method of sequential bifurcation was applied in 

order to study the 51 factors. We begin sequential 

bifurcation by calculating the response when all the 

factors are their low levels, y
(0)

= 1,516.920, and when all 

the factors are at their high level, y
(51)

 = 7,088.965. So 

the estimated effect of all 51 factors aggregated together 

is obtained from y
(51)

 – y
(0)

 = 5,571.445, considered as a 

variation of 100 %. The next step is to divide the current 

group of 51 factors into two equal subgroups, hence the 

term symmetric bifurcation, and to compute y
(26)

by fixing 

the first 26 factors at their low level, 

 

 

 

 

 

while the 25 others factors are set at their high level. At 

this stage, y
(26)

 is compared to y
(0)

 and y
(51)

 and the 

corresponding variation percentage of the response is 

calculated (Figure 8). The bifurcation continues by 

splitting active subgroups into smaller subgroups and 

eliminating non-active subgroups until the percentage of 

variation becomes non-significant. Figure 8 shows the 

different steps of the sequential bifurcation leading to the 

identification of 5 active factors U
3
, U

6
, U

13
, U

18
, U

45
 

and 5 factors to a lesser extent : U
11

, U
19

, U
26

, U
32

, U
33

, 

in 29 simulations. 

 

Figure 8. Steps of sequential bifurcation for the response: "production at 2000 days×10
-3

". 

 

 

METHODS
Number of 

experiments

U
1

U
2

U
3

U
4

U
5

U
6

U
7

U
8

U
9

U
1
0

U
1
1

U
1
2

U
1
3

U
1
4

U
1
5

U
1
6

U
1
7

U
1
8

U
1
9

U
2
0

U
2
1

U
2
2

U
2
3

U
2
4

U
2
5

U
2
6

U
2
7

U
2
8

U
3
9

U
3
0

U
3
1

U
3
2

U
3
3

U
3
4

U
3
5

U
3
6

U
3
7

U
3
8

U
3
9

U
4
0

U
4
1

U
4
2

U
4
3

U
4
4

U
4
5

U
4
6

U
4
7

U
4
8

U
4
9

U
5
0

U
5
1

OFAT 102

HADAMARD R III 56

HADAMARD  R IV 112  

SUPERSATURATED 28

GROUP SCREENING 32

MULTIPLE GROUP SCREENING 28

SEQUENTIAL BIFURCATION 29

Table 4. Synthesis of results obtained with the different screening methods 

 

Conclusion 
 

This first complete application of numerical simulation 

allowed us to compare a large range of screening  

 

 

 

 

methods, which can be successful if the assumptions 

associated to each of them are respected, that is: 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 6 7 8 9 10 11 12 13 27 28 29 30 31 32

44%

1 2 3 4 5 6 7 27 28 29 30 31 32

24% -5%

1 2 3 4 8 9 10 27 28 29 30

2%

1 2 11 12 14 15 16 17 18 19 20 31 32

12% -4%

3 11 14 15 16 17

11%

5 6 14 15 18 19

5 14 18 21 22 23

2% 3%

21 22

24 25

Threshold 11% 9% 4% 13% 14% -4% 4% -4%

2% 3 6 11 13 18 19 26 32

3% 3 6 11 13 18 19 26 32

4% 3 6 13 18

100%

63%

13% 2%

10%

1% 5%

1%

0%

2%

11% 3%
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 Additivity assumption for the Hadamard R
III

 designs, 

 Very few active factors for the supersaturated designs 

("sparsity effect"), 

 Knowledge on the direction of possible effects in 

order to suitably attribute the levels, for the group 

screening and the sequential bifurcation methods. 

 

To conclude, a summary establishes a synthesis of the 

results (Table 4) with the different methods and from 

this table, it can be noted that: 

 

 All methods, even with very few experiments 

(N=28, N=29), detect the most important factors : 

U
3
, U

13
, U

45,
 

 The Plackett and Burmann R
IV

 designs, with more 

experiments (N=112) identify more precisely the 

active factors, by quantification of the effects, 

unbiased by two-factor interactions, 

 Sequential bifurcation inevitably leads to the 

identification of the active factors, but this 

approach requires knowing, a priori, the direction of 

the effects. 

 

These conclusions on the comparison of different 

screening methods underline the importance of the 

underlying assumptions. In practice, the choice of the 

method depends on the objective of the study, on the 

possible number of simulations and on the risk (false 

positive or false negative) the experimenter will accept. It 

is obvious that the classical Plackett and Burmann R
IV

 

designs lead to most reliable conclusions and if the 

experimenters do not want to take any risk, this is the 

best strategy. Nevertheless, the Plackett and Burmann 

R
III

 designs seem to be a good compromise in order to 

decrease the number of simulations without necessarily 

going to supersaturated designs and without any 

assumptions imposed on the direction of the effects.  
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