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Responsible organizations monitor events that do or could injure their workers, or members of the public or the 

environment. As now is widely recognized, not all hazards pose the same relative risks that, if there is an incident, the 

outcomes will be serious or severe. The literature is found to not offer a clear method for assessing, statistically, upward 

(or downward) shifts in the distributions of incident-outcome severities that arise under different circumstances. An 

appropriate method could assist analysts who compare risks in diverse contexts—whether from floods, industrial hazards, 

hurricanes, or even financial risks. Typically, adverse-incident data are dichotomized (e.g. into fatal versus non-fatal 

outcomes), but advantages will be shown for a method that allows entire distributions of severity-outcomes to be 

compared. Applied to case-based examples from industry and a government safety organization, two methods are 

presented (at an Intermediate level) for comparing severity-outcome risks—one based on resampling procedures and the 

other using parametric approximations. Besides the data, the Excel file for this paper includes automated templates for 

readers to apply and experiment with the proposed methods. 

 

 
 

Good practice (and the law) generally require that 

employers monitor incidents that occur during their 

operations that do or could injure their own workers, as 

well as possibly members of the public or the 

environment. Incidents that occur in different contexts or 

environments can be distinguished by their relative 

frequencies of occurrence, or by the resulting severities of 

their occurrences. Presented in this paper are some 

revised tools and methodologies for addressing that 

important second aspect of safety - the likely severities of 

outcomes when incidents do occur. 

 

Distributions of Incident-Outcome Severities 
(“Severity Distributions”) 
 

When the results of incidents are analyzed over a period 

of time and, possibly, aggregated by region or industry, the 

distribution of their severities may look similar to the 

classical model of an ―accident pyramid‖ (or ―safety 

triangle‖), introduced by H. W. Heinrich in 1931 

(Heinrich, Peterson, Roos 1980). Figure 1 expands this 

model, and also reflects suggestions by Bird and Germain 

(1986). The key detail is that the most serious outcomes 

are just ―the tip of the iceberg,‖ and (assuming relative 

areas in the figure represent the corresponding risks for 

severities), we see that most accidents will usually have 

the less severe outcomes, and many will just be near 

misses. 

 

Heinrich proposed that for every 300 incidents that occur 

without an injury, we should expect about 29 or 30 others 

to involve a minor injury, and one additional outcome to 

be a severe injury. Bird and Germain‘s revised numbers 

reflect their own, subsequent study of insurance claims in 

North America. They expect the ratios of outcomes, for 

severity levels 1, 2, 3, and 4 in the figure, to be about 600: 

30: 10: 1. Those numbers are still being quoted as near 

paradigms for ‗true‘ ratios (e.g., in Howe 2007, and 
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Wausau Insurance Companies 2007). Others retain the 

visual model, but acknowledge that exact numbers can 

vary over time, or by type of incident, or by company (e.g., 

Pinnacle West 2006). 

 

 

Figure 1. A ―Safety Triangle‖ Distribution of Incident-

Outcome Severities 

 

An alternative way to represent the distribution of 

incident-outcome severities (i.e., a "severity distribution‖) 

is with a histogram, as illustrated in Figure 2. The objects 

for counting in this figure, slightly modified from an 

actual case for confidentiality, are the severity levels that 

resulted, as outcomes, from each individual incident 

(such as a fall, trip, shock, or chemical burn) that 

occurred during a specified time frame in the 

environment. This approach is better suited than the 

triangle for comparing severity risks between 

environments, or within one company from year to year. 

If the segments‘ areas in a safety triangle stand for relative 

risks of severity, note that each triangle-segment‘s area is 

a function of its squared distance from the base, so 

relative risks are hard to read from the figure—and in any 

case, the boundaries are rarely graphed to scale.  

 

 

Figure 2. A Sample Incident-Severity Distribution 

 

Perhaps a greater concern with the Safety Triangle model 

is its association, traditionally, with a specific assumption 

about how accidents and their outcomes‘ severities are 

related. This assumption is the ―identical causation 

hypothesis‖ (Lozada-Larsen & Laughery 1987). It claims 

that the same factors that cause any accident to occur will 

also lead by chance to the few unlucky cases having 

severe outcomes; so in theory, the ratios among severity 

levels identified by Bird and Germain would hold, more or 

less, for any type of company or circumstance. 

Empirically, this claim is unsupportable, as even the living 

co-authors of Heinrich‘s fifth edition now acknowledge: 

―[Different] things cause severe injuries [from those that 

cause] minor injuries‖; thus, ―there are different ratios for 

different accident types, for different jobs, for different 

people, etc.‖ (Heinrich, Petersen, & Roos 1980, pp. 64-

65). 

 

Lozada-Larsen and Laughery recommend a revised 

interpretation of the above hypothesis: The severity 

distribution for a specific firm or job class or time period 

can be mapped similarly to Figure 2, implying that relative 

risks for different severities of outcomes in that context are 

generally as shown. But, so far as another environment 

(or time) has different hazards, and different energy 

exposures, then a different distribution may apply there 

(or then). This revised model predicts, and the evidence 

confirms, distinct severity distributions for any of a variety 

of industries, whether in manufacturing (Kriebel 1982), 

meatpacking (Conroy 1989), or electrical generation and 

transmission (Hotte & Hotte 1990; Goodman 1992). 

 

 
Figure 3. F-N Chart for the Distribution of Potential 

Severity Risks for Catastrophic Events 

 

Note that in Figure 2, the counts are for incident-

outcomes for one person at a time. If two people collide in 

one event, then each person‘s outcome-severity is 

counted separately. Compare this with a similar type of 

chart developed earlier, called an ―F-N‖ chart, whose 

focus was on possible, public catastrophes; severity-levels 

are measured there in numbers of resulting fatalities. (See 

Figure 3.) For each severity level, its relative risk is in 

terms of expected frequency (e.g., on average, per year) for 

those severity levels occurring. Figure 3 is adapted from a 
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well-known chart, often cited and re-drawn, originally 

published in a study on nuclear reactor safety (U.S. 

Nuclear Regulatory Commission 1975; compare Foote 

2002). 

 

The graphical approach in Figure 4 combines Figure 3‘s 

comparisons of different sources‘ severity risks with Figure 

2‘s focus on individuals’ outcomes rather than the 

community‘s. Observe, in the figure, how it appears that 

the severity risks for those employed in tasks identified as 

―Work Category 6‖ may have shifted (like a rolling wave) 

towards the more severe end of the scale, compared to 

those generally in the population. The question then 

arises whether the degree of this apparent shift is 

significant in a particular case. This paper will explore 

procedures for answering that question. 

 

 

Figure 4. A Comparison of Severity Distributions - Overall 

versus One Work Category 

 

Assessing Upward (or Downward) Shifts 
Between Severity Distributions 
 

For a person responsible for safety management, the 

rejecting of the ―one ratio fits all‖ model for severity risk 

imposes a new obligation: As Petersen writes, ―If we want 

to control serious injuries, we should try to predict where 

that will happen‖ (1998); and this entails monitoring 

specific types and contexts of work (or play, for 

recreational hazards), to identify how and where some 

activities are more dangerous than others (Manuele 

2003). To provide something of a baseline, Manuele has 

compiled a list of the actual frequency ratios for 

(approximately) the severity levels envisioned by 

Heinrich, for various industries, and grouped by SIC 

(standardized industry) codes (Manuele 2004). A 

particular company might start by comparing its own 

distributions to the corresponding baselines for its 

industry. 

 
The literature fails to offer, however, a clear or standard 

methodology for making the comparison which Manuele 

and others recommend—between the severity 

distribution for one‘s own work group or other relevant 

context versus some reference population‘s distribution 

(e.g. for a whole industry, or from previous years). One 

idea tried by Manuele (2004) is to sort industries by their 

respective ratios of fatalities to overall injuries, and to see 

where one‘s own organization fits; but this method does 

not use all the information in the full distribution. For any 

one company, the number of fatalities may (hopefully) be 

rather small, and as Manuele acknowledges (2008), the 

contributors to the most extreme outcomes may be 

―unique and singular events, having multiple and 

complex causal factors‖. So unless one is employing large 

samples of aggregated data, there is typically too much 

variance, and too little power, to distinguish one 

distribution from another based solely on the ratios of 

fatalities to all other injuries. 

 
Another gap in the literature that could use a clear, 

documented method for identifying shifts between 

severity distributions is to complement papers that try to 

predict the severities of outcomes in differing contexts. 

Often, these latter employ ordinal severity classes. Yet for 

each severity class, they work backwards, in effect, to find 

clusters of covariate values that best ―predict‖ each 

severity level (or, at least, increase its relative likelihood 

of occurrence). For example: What railway or highway 

features tend to lead to the more severe accidents at 

railway crossings (Hu et al, 2010); or what demographic 

features associate with the higher-severity skiing 

accidents (Corra & De Giorgi, 2007; Girardi et al, 2010), 

or to reduced life-functional status among elderly persons 

over time (Anderson et al, 1998). 

 

Clearly, identifying clusters of characteristics that can 

elevate severity risks is beneficial. For example, predictive 

methods might have pointed to ―Work Category 6‖ (see 

Figure 4) as associated with the higher severities. But 

Figure 4 shows also that the severity risks get ―elevated‖ 

not as single points, but as upward shifts in probability 

distributions. Procedures are still needed to ask or confirm: 

How far precisely has an identified cluster-of-workers‘ 

severity distribution shifted from the aggregate 

distribution, with respect to both effect size and 

significance? 

 

To answer such questions, this paper recommends 

comparing severity distributions, not by reducing them to 

dichotomous alternatives like [fatal, not fatal], but by 

comparing the distributions as entireties. The method is 

consistent with Lozada-Larsen‘s and Laughery‘s premise 

(1987) that the ―identical causation hypothesis‖ contains 

a grain of truth—if we apply it, not to all accidents 

generally, but to those occurring in contexts that share 

comparable hazards, such as similar exposures to high 
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energies or sharp objects. With reference to Figure 4: If 

work-category ―6‖ is truly ―more hazardous‖ than others, 

this is not just because of its one fatality—which might 

have had very unique causes; but rather it is because, all 

along the distribution, the chances are always tending in 

the direction of more risk that outcomes will be more 

severe, compared to the baseline. 

 
In a study of factors that impact severity for ski injuries, 

the methodology used by Takakuwa and Endo (1997) 

takes some steps in the direction proposed in this paper. 

Using for severity the scale measure AIS (Abbreviated 

Injury Scale, described in OrlandoHealth 2009), which 

has a limited number (six) of ordinal severity categories, 

they draw charts similar to Figure 4 to compare ski 

accidents‘ relative severity risks, depending, for example, 

on whether the skis‘ bindings were released or not during 

the event. Yet, their paper fails to explain clearly how to 

compare the illustrated severity patterns. Instead, the 

authors choose cut points (not always the same ones) to 

dichotomize the data (e.g. demarcating [AIS ≤ 2, versus 

AIS > 2] for one test, and [AIS < 4, versus AIS ≥ 4] for 

another test); then, based on these dichotomies, they 

apply chi-square tests to 2 × 2 tables. 

 
In Cattermole‘s analysis of skiing injuries (1999), he 

similarly bases testing on chi-square analyses of 

dichotomized injury scores; in this case, using the more 

continuous Injury Severity Score measure, ISS. In an 

exploration of truck drivers‘ injuries, Charbotel et al 

(2003) take a similar approach to Takakuwa and Endo: 

They compare descriptively the full, differing distributions 

of severity scores, by AIS, for different groups; but then 

for formally assessing effect sizes or significance of 

differences between severities, they revert to 

dichotomized severities, based on [ISS<9, versus ISS≥9]. 

 
In short, when authors need to compare distributions of 

outcome severities, the methods they choose seem 

improvised and, collectively, inconsistent. 

 

Why Not Chi-Square ( 
2
)? 

 

As noted, some authors like Charbotel and Takakuwa & 

Endo recognize that different accident circumstances 

often have different distributions of outcome severities. 

To confirm these apparent differences they use χ2
 tests - 

but apply these to simplified versions of the distributions, 

generally reducing them to just two values (―worse‖ or 

―better‖), by some criteria. If graphically they have 

considered the whole distributions, why do they not 

compare them as a whole? Problems that can arise with 

the dichotomizing include (a) how to validate the cut-

point decision (such as Takakuwa & Endo‘s AIS > 2 in 

one test, and AIS ≥ 4 in another test in the same paper), 

and (b) lack of power and/or model appropriateness for 

using χ2
 tests where n is relatively small. Figure 5 

illustrates both problems. (The data in the figure reflect, 

like Figures 2 and 4, actual business cases, with slight 

random modifications for confidentiality.) 

 

 

Figure 5. A Comparison of Severity Distributions - Overall 

versus Division ―L‖ 

 

By eye it appears that the risk of more severe accidents 

may be greater in Division ―L‖ than in the overall 

population of a certain large company. If the selected cut 

point for testing a 2 × 2 matrix is set at severity levels less 

than versus equal to 5 (see bottom table in the figure), 

then the χ2
 result will suggest no significant effect (i.e. no 

Division-based difference between the ratios of counts 

between severity levels) (χ2
 = 0.708, DF = 1, p-value = 

0.400); whereas if the cut point is set at severity levels less 

than versus at least equal to 4, then ―a significant 

difference‖ would be concluded between the Division 

groups, with respect to ratios of counts between severity 

levels (χ2
 = 12.495, DF = 1, p-value = 0.0004). Which 

conclusion is correct? To avoid ―fishing‖ arbitrarily for the 

―best‖ cut point, what guidelines should be used? Also 

note that for the cut-point-at-5 decision in this example, 

the testing model‘s guideline that expected values in all 

cells equal at least 5 is violated. For smaller samples, it is 

not uncommon that even the more stringent guideline 

that all expected values equal at least 1 gets violated. 

 

An alternative χ2
 test, which does have the advantage of 

comparing severity distributions as a whole, is to use χ2
 

tests for goodness-of-fit—comparing a given severity 

distribution against a model for the expected distribution. 

These are a step in the right direction, but still have some 

problems. 

 

Table 1 shows the outputs from Minitab Version 16, of 

conducting a goodness of fit test for Division L‘s severity 

distribution (per Figure 5; see ―observed‖ column in the 

table) compared to the overall population distribution 
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(―historical counts‖ column in the table). Again we see a 

violation of the guideline that all expected values be at 

least 5: In view of sample size, and the population‘s 

distribution, only ―1.18‖ outcomes at Category 5 level 

would be expected. Nonetheless, the test model does 

clearly reflect a shift in severity pattern: For the lower 

severities, the observed counts are less than was expected 

if Division ―L‖ were no different from the population, 

whereas for higher severities, the actuals are larger than 

expected. The effect size for χ2
 reflects this relationship, 

as does the low p-value. 

 

Table 1. Chi-Square Goodness-of-Fit Results 

 

 

Table 2 illustrates a potential problem of using χ2
 to test 

for differences between two severity distributions. Applied 

to safety, a mere change of severity pattern from some 

reference—in no particular order—is not usually what 

draws attention; alarms sound when the distribution 

tends to shift upward, systematically, to higher severities. 

The data for Table 2 are approximated from Takakuwa 

and Endo‘s Figure 5 (1997) (wherein the exact 

frequencies are not displayed). Severities of ski injuries for 

cases when ski bindings are unreleased during the 

incident (―Observed‖) are compared to the overall ski-

injury distribution (―Historical Counts‖). At first glance, 

the χ2
 and p-values appear to support the authors‘ claim 

that ―binding release [or more accurately, the failure of 

bindings to release] was significantly correlated with a 

higher [severity as measured by] AIS.‖ But ―correlation‖ 

generally implies a directional consistency, which is not 

found in the table: One of the two lower-severity 

categories for the Observed column has a larger than 

expected count, while one of the two higher-severity 

categories has a lower than expected count; these data do 

not suggest that non-release consistently tends to raise the 

severity. Because χ2
 does not distinguish between on-

trend and counter-to-trend variances from the expected 

values, both types of variance get added, spuriously, 

which can inflate the apparent effect size. 

 

A third limitation of the χ2
 goodness-of-fit approach, 

beyond the spurious effects and the often-violated 

minima requirement for expected values, lies in the 

difficulty of interpreting and communicating the effect 

size. As the scientific and publishing communities 

increasingly recognize, statistical results are more 

convincing if effect sizes (ideally with confidence 

intervals) are reported along with conventional p-values 

for significance (Ellis, 2010; Goodman, 2010). The χ2
 

measure can be inflated artificially by various 

circumstances; not just by spurious effects, but also for 

example if the data representing the population 

distribution includes a zero-frequency severity category, 

and the frequency increases by even one in the obtained 

sample. This inflationary effect could occur arbitrarily, 

due to boundary choices for the severity classes. So, even 

if reporting to an audience who are familiar with χ2
, the 

extent to which its magnitude measures a real effect may 

not be intuitive or obvious. 

 

Table 2. Spurious Effects in Chi-Square Goodness-of-Fit 

Results 

 

 

Proposed Procedures to Assess Upward (or 
Downward) Shifts Between Severity 
Distributions 
 

We conclude that new procedures are needed to validly 

and reliably assess whether, in comparing a sample‘s 

severity distribution to a reference severity distribution 

(for a putative population), the sample‘s distribution has 

meaningfully shifted towards each individual having 

greater probabilities of assuming higher (or lower) severity 

values than is modeled in the reference. The proposed 

method would not assess goodness (or non-goodness) of 

fit, in general, but rather, in the sense illustrated in Figure 

4, whether there has been a systematic, upward (or 

downward) shift-from-fit. The intended procedures should 

also reflect the importance to safety practitioners of (a) 

being as straightforward as possible to use in the field, and 

(b) appearing intuitive to all stakeholders evaluating the 

results. Two such methods are presented. 

 

The main method presented here (―Method 1‖) employs 

resampling techniques, to minimize requirements for 

parametric assumptions about the distributions. The 

Excel file conjoined with this article includes templates, 

with macros, that implement the procedures described; 

and the macro scripts and formulas are all fully accessible 

for inspection. (For quicker run-times, a commercial 

resampling add-in or program could be partly 

substituted.) The second approach (―Method 2‖) provides 
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parametric approximations for the resampling-based 

results from Method 1. Some may find this method more 

accessible, and it is found to be reasonably robust to 

variations from its ideal assumptions. 

 

Method 1 

 

The basic inputs and outputs for the proposed procedure 

are illustrated in Figure 6. This figure combines elements 

from three separate worksheets in the conjoined file: An 

input screen; a screen to generate a point estimate for 

effect size and a p-value; and a third screen estimating the 

95% confidence interval for the effect size. The source 

data in the figure are the same as in Table 2. Observe that 

the spurious effect described previously, wherein χ2
 was 

inflated by non-systematic changes across the distribution 

from the expected distribution, does not occur here: The 

p-value calculates as non-significant, and moreover the 

effect size appears to be negligible, as will be explained. 

 

 

Figure 6. Inputs and Outputs of the Procedure 

 

In Takakuwa and Endo‘s original example, the 

hypothesized population distribution is the marginal 

distribution of ski-injury severities, regardless of whether 

or not the victim‘s bindings were released during the 

incident. In other words, for a test of whether non-release 

of bindings impacts severity, the pooled severity 

distribution, for both groups combined, provides an 

estimate for the null population‘s distribution. The data 

labeled severity distribution for the obtained sample is, in this 

case, the distribution of injury severities specifically for 

those whose bindings were not released. The test question 

is: Has the obtained sample‘s pattern significantly shifted 

from the hypothesized population‘s? 

 

The statistic underlying the effect size calculation is the 

raw severity index (SI
raw

), calculated for each of the 

hypothesized population and the obtained sample. SI
raw

 is 

simply a frequency-weighted mean for the severity levels: 
 

Formula 1. SI
raw

 = 
 


 



Freq

FreqSevRank
k

i ii1

 

 

where each SevRank
i
 is one of the severity levels, from 1 

to k, that have been defined for the application, and Freq
i
 

is the corresponding frequency for that severity level. In 

Figure 6, we see that four severity levels have been 

defined for the hypothesized population. If every level of 

severity were equally likely for every incident, then SI
raw

 

would be simply the mean of the severity level numbers 

(1, 2, 3, 4), and so equal to 2.5. The frequency column 

conveys the additional information that not all severities 

are equally likely to occur; so the frequency-weighted 

mean incorporates this extra distributional information. 

 

Technically, Formula 1 (which is finding a mean severity 

level) presumes that the data are interval or ratio level, so 

that distances between any two, successive severity values 

(e.g. from severity level 1 to 2, versus from level 3 to 4) 

are all the same. Yet, it would seem that the assigned 

severity categories are ordinal data (simple ranks), which 

lack the required property. However, the author observes 

that, as assigned in practice, severity categories can be 

interpreted as quasi-interval-level in nature. They are 

certainly not assigned subjectively, as for example Likert-

scale values might be. There are certain objective 

milestones or thresholds that must be reached or crossed 

to elevate a severity assignment to higher levels; in a 

sense, the severity level is like a count of milestones that 

have been met. For example: In industrial accident 

contexts, the ‗distance‘ from Severity level 1 to level 2 

might be the crossing of the threshold from no lost time 

incidents to some lost time. Further up the scale, the 

‗distance‘ from Severity level 3 to level 4 might be 

crossing of the threshold from ‗merely‘ a serious, lost-time 

injury to an outcome for which (by policy or regulation) 

‗long term disability‘ status must be applied for. Thus, an 

increase in mean severity level for a severity distribution 

is a measure of how far up this scale of ‗serious milestones 

reached‘ an organization‘s incidents are tending to fall. 

 

Referring back to Figure 6, note that SI
raw

 for the null 

distribution is about 1.73 and SI
raw

 for the obtained 

sample is about 1.80. By eye this difference looks rather 

small; but the units are not well-suited for 

communication: On the one hand, the weighted mean for 

severity levels (SI
raw

) is not widely familiar as a unit 

(although this could be addressed by education). More 

seriously, SI
raw

 is a relative measure, dependent on the 

number of severity categories that happen to be defined 
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for an application. In a severity scale from 1 to 3, for 

example, an SI
raw

=2.4 would suggest a marked trend 

towards more severe outcomes, yet in a severity scale 

from 1 to 7, an SI
raw

=2.4 would seem more trended 

towards low severities. Therefore, SI
raw

 values will be 

transformed to standardized severity index (SI
std

) values, 

which are comparable between different contexts. 

 

SI
std

 can be interpreted as a measure of ―percent-distance-

along-the-severity-scale‖ (i.e. from the lowest to the 

highest possible values). 

 

Formula 2. SI
std

 = 100
1

1






K

SI raw  

 

where K is the defined number of severity categories. In 

the case of all ski injuries (see Figure 6 at the upper left), 

if all outcomes had severity level equal 1, then SI
raw

 would 

equal 1, its lowest possible value; if all outcomes had the 

maximum severity level (here equal to 4), then SI
raw

 

would equal 4. Because in fact, SI
raw

 equaled 1.73 - which 

is 24.3% along the distance scale, from the lowest- to 

highest-severity possibilities - SI
std

 equals 24.3. 

 

On this basis, the point estimate for effect size (ΔStd) is 

defined as the difference between the two standardized 

severity indexes - the obtained sample‘s and the 

hypothesized population‘s: 

 

Formula 3. ΔStd = SI
std, obtained sample 

–SI
std, hypothesized population

 

 

For the ski-injury example (Figure 6), this effect size is 

only about 2.3. That means that, even discounting margin 

of error and supposing ―statistical significance‖, there is 

only a 2.3 percentage point shift along the severity scale, 

from the null case to the sample group‘s. Clearly, this 

shift, even if it is real, is very small. The implication is 

that, in general, outcome severities have scarcely changed 

from the null model; and if any specific incident turns out 

by chance to have an extreme outcome, it is likely 

associated with some unique, unmodeled circumstance, 

rather than being explainable by the small, general 

severity shift. 

 

The p-value displayed in Figure 6 is determined by 

resampling, as follows (for more details about the Excel 

algorithm, see the Appendix which follows the 

References): Under the null hypothesis, the actually 

obtained sample is just one random instance of the size-n 

samples that could have been drawn from the 

hypothesized population. The actually obtained effect size 

ΔStd is the sample statistic. We interpret the relative 

frequencies of the severity categories in the null as giving 

the expected probability distribution for the severities to 

occur within particular samples. Thus, we can simulate 

the drawing, sequentially, of many random, size-n samples 

from the hypothesized population, and calculate the 

effect size (sample statistic) for each case. The 

distribution of a set of many such simulated effect sizes 

approximates the sampling distribution for the sample 

statistic, as expected for samples of size n taken from the 

null population. For one-tail testing, the proportion of 

those sample statistic (effect-size) values in the sampling 

distribution that equal or exceed the actually obtained 

value in the sample is the p-value, which can be used 

(with caution) as a possible indicator of significance. 

 

The tests are usually right tail because, when testing for a 

significant difference in a severity distribution, compared 

to a baseline, one is generally concerned with shifts 

towards greater severity. It is possible, of course, to 

consider a factor that is associated with an apparent 

downward shift of severities, in which case a left tail test 

would apply. In the attached template in Excel, if a 

downward severity shift is detected, then the display also 

adds the p-value from a left tail perspective. 

 

The final output when using the proposed method is a 

95% confidence interval for the effect size. Just the point 

estimate for effect size does not account for the variability 

in the sampled data. In Figure 6, this additional 

information provides a further indication that the 

sampled group may not be meaningfully different from the 

general population: In the confidence interval, we see 

that the effect size might actually be negative, and if 

positive, only by a little. 

 

As in the example just described, it is often the case that 

if the p-value is ―not significant‖ (e.g. p-value > 0.05), 

then the confidence interval (CI) for effect size straddles 

the value zero (0), and vice versa. But exceptions can 

occur for two reasons: (1) The p-value is calculated from 

a one tail model, whereas the confidence interval is here 

splitting the variability onto two tails. (2) The variance 

underlying the p-value calculation is based on data in the 

model for the full, hypothesized population, whereas the 

variance for calculating CI is found directly from the 

sample data. The two estimates may differ. 

 

Procedurally, the proposed method requires a separate 

cycle of bootstrapping, from the sample data of interest, 

to determine the confidence interval. The procedure 

cannot directly use the results from the foregoing p-value 

procedure. As mentioned earlier, the CI estimate draws 

its data from the sample itself (there is no ‗null‘ premise 

for the population distribution), so the procedure re-

simulates the sampling distribution for the effect size - but 

this time using the sample itself as the best model 
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available for the true probability distribution of outcome-

severities. The set of all the effect-size outputs following 

many repetitions simulates the sampling distribution for 

the effect-size sampling statistic; and the values lying on 

2.5
th

 and 97.5
th

 percentiles, respectively, of that 

distribution, are the estimates for the lower and upper 

bounds of the 95% confidence interval for the true 

parameter. 

 

Method 2 

 

For those without access to the attached templates or 

other resampling program, an alternative version of the 

proposed method is provided, based on the familiar t-

distribution. This works because the sample statistic is 

really a mean (i.e. the group mean of the standardized 

severity levels), so for large enough samples, the central 

limit theorem applies to its sampling distribution. (You 

can test this by experimenting with the attached 

templates; the sampling distribution is simulated by the 

output set of a program run, which the computer then 

graphs as a histogram.) The t-distribution model is 

imprecise (a) when sample sizes are small, because 

severity distributions are typically quite skewed, and (b) 

due to the data‘s discreteness (i.e. the defined severity 

levels are discrete.). Nonetheless, experiments with the 

template, which readers can replicate, suggest the relative 

robustness of the model. 

 

For this parametric approach, the only real innovation is 

the construct of the standardized severity index - for each 

of the null population and the obtained sample. The 

effect size measure is simply the difference between 

sample‘s SI
std

 (which is now the sample statistic) and the 

null‘s SI
std

. Note that, for convenience, the calculations 

based on Method 2 are also automated and included in 

the attached Excel file, in the fourth tabbed worksheet. 

 

Figure 7 highlights some steps for parametrically 

obtaining the p-value. In this approach, the sample 

statistic is the standardized severity index for the obtained 

sample. But we convert the sample statistic to a test 

statistic, based on how many standard errors the sample 

statistic is from the expected parameter value (i.e. from 

SI
std 

for the hypothesized population). 

 

Formula 4.  

 

That distance, in the numerator, we have calculated 

previously (per Formula 3) as the effect size (ΔStd), 

shown at the top right in Figure 7. 

 

Typically, the standard error for the denominator would 

be estimated as s/√n—because s is usually the only 

estimate available for the hypothesized population‘s 

standard deviation σ. In this application, we can find a 

better estimate for σ: σ
est.

—based on the explicitly 

hypothesized frequency distribution for the null. This is 

the formula for estimating the standard deviation of the 

hypothesized population, based on its frequency 

distribution: 

Formula 5. σ
est

=

1

))((
1

2



 

null

k

i stdii

n

SevMeanxw
 

 

where x
i
=the standardized equivalent to the ith severity 

level (of the k levels available) (standardized 

per Formula 2) 

 SevMean
std

=the frequency-weighted mean for the 

population‘s standardized severity levels
*
 

 w
i
=the weight for the ith severity-level—using 

the frequencies as the weights 

 n
null

=the sum of the frequencies
** 

 
* 
SevMean

std
 is equivalent to the previously calculated SI

std, hypothesized population
, 

shown at the upper right in Figure 7. In a previous section, we calculated 

the frequency-weighted mean for the severities, then standardized the 

result; as interpreted here, we standardize the severities first, then find 

the weighted mean for the standardized values. 

** 
n

null
 includes all counts in the hypothesized population distribution. It is 

not a population size N, because generally we do not have access to a full 

population of all relevant cases. Most likely, the population is larger than 

n
null

, and the standard deviation formula reflects (by using (n
null

 – 1)) this 

sample-like aspect of the available reference distribution. Nonetheless, 

the null assumption is that the relative frequency distribution of the full 

population is reasonably accurately represented in the available data 

distribution being used as the null model.  

 

Acknowledging the sample-like aspect of the distribution 

used for the null model, one might suggest using a two-

sample t-test for this parametric approach (with the 

reference distribution being one sample), rather than 

interpreting the test as a one-sample t-test, in which a 

sample is compared to a hypothesized population 

distribution. In the author‘s experience, however, in the 

field, the latter model seems to better reflect the 

conditions for conducting these tests. For example, in a 

uranium mine, one might query whether the miners‘ 

exposures to elevated radiation levels are greater in a 

particular mine level (the sample) compared to in the 

mine, generally (the population). But there is no really 

independent way to measure radiation exposures ‗in 

general‘ in the mine; one only has exposure data from 

actual workers‘ dosimeters, which are dispersed in 

particular places in that environment - widely dispersed, 

but not into every possible location or condition in the 

mine. Under the null hypothesis (that workers in all 

levels in the mine are subject to the same radiation-

exposure-distribution), the aggregated distribution from  



 

Figure 7. Parametric Calculations for the p-Value for a Difference in Severity Distribution 

 

 

Figure 8. Calculations for 95% Confidence Interval for Difference in Sev. Distributions 

 

all available dosimeters, from whatever work area, is 

taken to offer the best approximation for the ‗true‘ 

population distribution, if the null is true. The 

distribution in the one mine area of special interest can 

be compared to that reference. 

 

Calculations reflecting Formula 5 are illustrated on the 

left in Figure 7; the calculated σ
est.

 appears near the 

bottom, centre. As illustrated near the right, middle, in 

the figure, we divide σ
est.

 by the square root of the sample 

size n (for the obtained sample) to estimate the standard 

error for the sampling distribution. We can now complete 

the calculation for the test statistic t; and knowing the 

degrees of freedom (n-1), we calculate the p-value 

conventionally. Observe at the bottom right of the figure 

that, for the illustrated data, the calculated p-value is 

close to the result obtained earlier by resampling. 

 

A parametric model can also be used to calculate a 

confidence interval for the effect size. Some basic steps 

are illustrated in Figure 8. At the right, middle, of the 

figure, we see the conventional formula for calculating 

the Margin of Error for a 95% confidence interval: 

 

Margin of Error = ±[(standard error for the sampling 

distribution)×(t
critical,α=0.05,df=n-1

)] 

 

The standard error is calculated conventionally, as s/√n, 

but in this case the standard deviation s is determined by 

formula from the grouped data in the sample itself; there 

is no null assumption for the distribution. 

 

Formula 6. s
(based on the obtained sample)

=

1

))((
1

2



 

n

SevMeanxw
k

i stdii
 

 

where x
i
=the standardized equivalent to the ith severity 

level (of the k levels available) 

SevMean
std

 = the frequency-weighted mean for 

the sample’s standardized severity levels
 
(this is 

equivalent to SI
std,obtained sample

)
 

w
i
=the weight for the ith severity-level—using 

the frequencies as the weights 

n=sample size = the sum of the frequencies 
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For the final steps of finding a confidence interval for the 

mean, we apply the conventional formula: 

 

CI = [Point Estimate] ± [Margin of Error] 

 

But note that the point estimate of current interest is for 

the effect size, not for the population mean, per se. The 

effect size, we recall, is: 

 

 (SI
std, obtained sample 

–SI
std, hypothesized population

). 

 

For a one-sample estimate of the mean, we would simply 

wrap the margin of error around the sample mean which 

equals SI
std,obtained sample

. Mathematically, however, 

 

(SI
std, obtained sample

 ± Margin of Error)–(SI
std, hypothesized 

population
) 

 

is equivalent to a calculation for effect-size CI: 

 

(SI
std, obtained sample 

–SI
std, hypothesized population

) ± (Margin of 

Error) 

 

Cases 
 

Included in the Excel file for this paper are five cases, 

each on a separate worksheet tab, that can be used for 

experimenting with the methods described here. Both the 

re-sampling approach (Method 1) and the parametric-

approximations (Method 2) can then be run. (Additional 

documentation is included on the spreadsheets, and 

amplified in the Appendix.) 

 

Each case page includes, for comparison purposes, the 

result of using a chi-square test (for goodness of fit, or for 

independence (i.e. using a 2 × 2 reduction of the 

distributions), as appropriate.) The chi-square results 

were generated by Minitab
®

 16.1.1, as also were Minitab‘s 

―warnings‖ where the ideal assumptions for running the 

chi-square are not met. 

 

Four of the cases are drawn from real industrial-safety 

contexts, but with exact values and descriptions modified 

for confidentiality. The fifth case invites a comparison 

between the severity data for a particular (hypothetical) 

company, versus the benchmark of severity distributions 

for a corresponding administrative region and time period 

(from data in Association of Workers‘ Compensation 

Boards of Canada, 2010). 

 

Conclusions 
 

This paper has described the need for new procedures 

than can validly and reliably assess differences between 

severity distributions. As shown, not all hazardous 

situations have the same proportional risks that, given 

occurrence of an incident, its outcomes will be severe. 

Clear methods have not been available for assessing 

whether, and by how much, the severity-risk distributions 

differ from one case of interest to another. When 

quantitative analyses are reported, they often have 

focused on occurrences of just one severity level at a time 

(e.g. fatalities), which may or may not reflect a general, 

across-the-board increase in severities between contexts. 

 

In response to this need, two related methods have been 

presented for assessing differences between severity 

distributions, both in terms of their effect size (including 

a confidence interval) on a readily understood scale, and 

a p-value. The resampling-based method has the 

advantage of limiting requirements for parametric 

assumptions. The attached Excel file includes a template 

for running such analyses. An alternative, parametric 

metric does not require automation (although this is also 

provided, for convenience), and it is demonstrably robust 

to most circumstances. Real-world based cases have been 

provided to enable readers to experiment with the 

methods. 
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Appendix 
 

Notes on the Attached Excel Worksheet 

 

All data are in the file Severity Shift Calculations_ 

Effect Size_p_&_CI.xls. 

 

Tab: Inputs Worksheet 

 

There are three data Inputs required to run all the 

procedures described in this paper: (1) The severity 

distribution for the hypothesized population or baseline; 

(2) the severity distribution for the obtained sample; and 

(3) the number of defined severity categories. The Inputs 

worksheet instructs where to make those inputs and 

provides preliminary outputs, such as the raw and 

standardized severity indexes. 

 

Tab: Effect Size & p-value 

 

The left portion of this page re-caps the inputs, and 

displays the point estimate for the Effect Size, in the units 

described in this paper. Once the macro button (―Click 

to Generate Outputs‖) is clicked, resampling is used to 

produce and display a (right-tail) p-value in Row 22. (If 

the system detects a negative effect-size, then the screen 

also displays a left-tail p-value in Row 23.) 

 

Intermediate steps are recorded and documented in 

columns BA to BL. A single resample, of the size of the 

actually obtained sample, is drawn randomly from a 

probability distribution consistent with the hypothesized 

population distribution. The effect size for this one 

resample is calculated and recorded in cell BL9. When 

the Macro is run (see above), 5000 such re-samples are 

calculated, independently, and their effect sizes are 

recorded in column BM, as well as graphed as a histogram 

in Columns S to AA. (Following Hesterberg et al.(2003), 

the number of resamples used was larger than the 

common choice of 1000 (compare Blank, Seiter & Bruce 

(2001), and Sormani et al. (1999)), since the greater 

number helps to smooth and remove gaps in the 

distribution, and generally ―introduces little variation‖.) 

The p-value finally displayed in cell K22 is the proportion 

of the 5000 resampled effect sizes that are at least as large 

as the actually obtained effect size, in L2. 

 

Tab: Confidence Interval 

 

This page is organized similarly to the preceding. Press 

the Macro (―Click‖) button to begin estimating the 

boundaries of the confidence interval for the effect; they 

will be displayed in the range I22:L23. Again, 

intermediate steps are columns BA to BL, which 

randomly generate a single sample of the size of the 

actually obtained sample, and find its corresponding 

effect size. This time however, the probability distribution 

used to generate the resample is the original, obtained 

sample; there is no null assumption for the distribution. 

Resampling repeats this process 5000 times. The 

resulting, estimated sampling distribution of effect sizes is 

graphed, and the 2.5
th

 and 97.5
th

 percentiles from the 

distribution provide the CI boundaries. 

 

Tab: Formula-Based Versions 

 

This page applies and illustrates the procedures, from the 

Method 2 section of this paper, to find parametric 

approximations for the p-value (cell J17) and the 

confidence interval for Effect Size (range G35:J35). In 

neighboring cells, for comparison, the resampling-based 

results are shown (assuming those procedures have been 

run). 

 

Tabs (5) for Cases 

 

(These pages are described in the Cases section of this 

paper.) 
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