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Student's t mixture model-based clustering is often used as a robust alternative to the Gaussian model-based clustering. 

In this paper, we aim to cluster several different datasets at the same time, instead of a single one as is common, in a 

context where underlying t-populations are not completely unrelated: All individuals are described by the same features 

and partitions of identical meaning are expected. Justifying from some natural arguments a stochastic linear link between 

the components of the mixtures associated to each dataset, we propose some parsimonious and meaningful models for a 

so-called simultaneous clustering method. Maximum likelihood mixture parameters, subject to the linear link constraint, 

can be easily estimated by a GEM algorithm that we describe. We then propose to apply these models to two financial 

company time-dependent data sets, consisting of both healthy and bankrupt companies. Our new models point out that 

the hidden structure could be more complex than generally expected, distinguishing three groups: not only two clear 

groups of healthy and bankrupt companies but also a third one representing companies with unpredictable health. 

 

Keywords:  Stochastic linear link, t-mixture, model-based clustering, EM algorithm, model selection, 

company failure. 

 

 
 

1. Introduction 

 
Clustering aims to split a sample into classes in order to 

reveal a hidden but meaningful structure in a dataset. In 

a probabilistic context it is standard practice to suppose 

that the data arise from a mixture of parametric 

distributions and to draw a partition by assigning each 

data point to the prevailing component (see McLachlan 

and Peel, 2000, for a review). In particular, in the  

multivariate continuous situation, t-mixture modeling is 

usually seen as a robust alternative to the Gaussian  

 

 

modeling (Archambeau and Verleysen, 2007) since it is 

frequently the case that real data have heavier tails than 

the normal distribution allows for (Bishop and Svensén, 

2005). It has found successful applications in such diverse 

fields as image registration (Gerogiannis et al. 2009) or 

letter recognition (Chatzis and Varvarigou, 2008) for 

example. Nowadays, involving t-models for clustering a 

given dataset could be considered familiar to every 

statistician as well as to more and more practitioners. 
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However, in many situations, one needs to cluster several 

datasets, possibly arising from different populations 

(instead of a single one) into partitions with identical 

meaning. For instance, Lourme and Biernacki (2010) 

extended the standard Gaussian model-based clustering 

for simultaneous partitioning of three samples of seabirds 

living in several geographic zones, leading to very 

different morphological variables and showed that this 

model outperforms the naïve approach consisting in 

performing one independent clustering by sample. The 

proposed model relies on a linear stochastic link between 

the samples, which can be justified from some simple but 

realistic assumptions. 

 

This paper proposes to extend this work to the case of 

multivariate Student's t models (in-short t-models) in 

order to simultaneously classify several datasets instead of 

applying several independent t-clustering methods. 

Similarly to the Gaussian case (Lourme and Biernacki, 

2010), a linear stochastic link between the populations 

from which the samples arise is argumented and 

established. This link allows us to estimate, by maximum 

likelihood (ML), all mixture parameters at the same time 

and consequently allows us to cluster the diverse datasets 

simultaneously. 

 

In Section 2, starting from the standard approach of some 

independent t-mixture model-based clustering methods, 

we present the principle of simultaneous clustering. Some 

parsimonious and meaningful models on the established 

stochastic link are then proposed in Section 3 and 

associated ML estimates are given in Section 4 through a 

GEM algorithm. Some experiments are finally performed 

on a large set of companies described by their financial 

ratios given over two time periods (mixing of data from 

2002 and 2003) in order to build a typology over their 

financial health (Section 5). Finally in Section 6 we make 

concluding remarks. 

 

2. From independent to simultaneous t-
clustering 

 

In simultaneous clustering, the aim is to separate   

samples into   groups. Each sample               is 

composed of   
 individuals   

            of   
 and 

arises from a population   
. In addition, all populations 

are described by the same  continuous variables and we 

assume that the underlying partitions of each sample 

have the same meaning. 

 

2.1.Standard solution: Several independent t-clusterings 

 

In a standard t-model-based clustering framework (see 

McLachlan and Peel, 2000, Chapter 7), the individuals 

  
            of each sample   

 are assumed to be 

independently drawn from the random vector 

  
following a  -order t-mixture   

 with probability 

density function: 

         
   

 

  
        

    
    

         

 

The coefficients   
           are mixing proportions 

(for all     
    and  

   

 

  
   ) and        

    
    

   

denotes the d-variate t-distribution with degree of 

freedom   
   

*

+
, with location parameter   

    
 and 

with inner product matrix   
      

(positive-definite): 

       
    

    
   

  
    

 

 
     

      
    

 
  
    

    
            

     
   

     
     

  
     

    
. 

 

The mixture   
 is then entirely determined by    

   
          where   

     
    

    
    

  . 
 

Two kinds of hidden data can be highlighted in this 

model. First, a binary vector   
       

        
   indicates 

whether the data point   
 
 has been generated (    

   ) 

or not (     
   ) by the  -th t-component   

 
 of   

 

mixture. The vector   
 

is assumed to arise from the  -

variate multinomial distribution of order 1 and of 

parameter    
      

  . Second, if   
 
 has been generated 

by   
 
, then it can be assumed equivalently that   

 
arises 

from the normal d-variate distribution      
    

    
  , 

where   
   

*

+
 denotes some hidden data arising from 

the gamma distribution    
      

    (see McLachlan and 

Peel, 2000, p. 223). 

 

So the complete data model assumes that 

   
    

    
           are realizations of independent 

random vectors identically distributed according to 

           in     
*

+         where    
   

      
   is a binary vector from the multinomial 

distribution with parameter    
          ,    

  
    is a random variable distributed as    

      
    and 

           
     is normal with mean   

 
 and 

covariance matrix   
   . 

 

Estimating              by maximizing its log-

likelihood function           
   

 

 
   

  

       
       

 
   

 

            computed on the observed data leads to 

maximizing independently each log-likelihood function 

            of the parameter   
 computed on the 
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sample   
. Several avatars of the EM-algorithm can 

perform the maximization. Two examples are available in 

McLachlan and Peel (2000) (p. 224 – 229) and in Wang 

and Hu (2009). 

 

The observed data point   
 

 is then allocated by the 

Maximum A Posteriori principle (MAP) to the group 

corresponding to the highest estimated posterior 

probability of membership computed at the ML estimate 

  : 
 

    
          

       
     . 

 

Since the partition estimated by independent clustering is 

arbitrarily numbered, the practitioner must, if necessary, 

renumber some clusters in order to assign the same index 

to clusters having the same meaning for all populations. 

The simultaneous clustering method that we now present 

aims both to improve the partition estimation and to 

automatically give the same numbering to clusters with 

identical meaning.  

 

2.2.Proposed solution: Using a linear stochastic link 

between the populations 

 

From the beginning the groups that have to be discovered 

consist in a same meaning partition of each sample and 

samples are described by the same features. In a similar 

case (but in a Gaussian mixture model-based clustering 

context), when populations were so related, we proposed 

in Lourme and Biernacki (2010) to establish a 

distributional relationship between the components 

sharing identical labels. We take up here, in a t-model-

based clustering context, this idea on which the so-called 

simultaneous clustering method is based. Then we 

assume below that the conditional populations are related 

by a stochastic link and we specify this link thanks to 

three additional hypotheses   ,    ,   . 

 

For all                 and all          , a map 

  
          

 is assumed to exist, so that: 

 

       
        

          
    . (1) 

 

This model implies that individuals from some t-

component   
 

 are stochastically transformed (via   
    

) 

into individuals of   
  

. In addition, as samples are 

described by the same features, it is natural, in many 

practical situations, to expect that a variable in some 

population depends mainly on the same feature, in 

another population. So we assume (Hypothesis   ) that 

the j-th (          ) component    
         of   

    
 

depends only on the j-th component     
 of its variable 

    
. 

 

In other words,    
         corresponds to a map from   

into   that transforms, in distribution, the conditional t-

covariate       
        into the corresponding 

conditional t-covariate        
        . Assuming 

moreover that    
         is continuously differentiable for 

all   (Hypothesis   ) then the only possible 

transformation is an affine map. Indeed it is proved in 

Biernacki et al. (2002) that there exist exactly two 

continuously differentiable maps from   into   which 

transform some real-valued normal non-degenerate 

variable into another one, and that these two maps are 

both affine. This theoretical result does not concern 

normal distributions only but it can be extended to any 

couple of real-valued variables with support   as 

      
        and        

        , admitting a 

symmetric distribution (see Appendix A for a proof). 

 

As a consequence, for all                 and 

         , there exist   
         

 diagonal, and 

  
       

 so that: 

 

       
        

          
       

    
. (2) 

 

Relation (2) is the affine form of the distributional 

relationship (1), obtained from both hypotheses    and 

  . It implies on the one hand that inner product 

matrices and location parameters are linked respectively 

by: 

 

  
     

      
   

    
 and   

     
      

    
    

. (3) 

 

Relation (2) implies on the other hand that degrees of 

freedom are equal through the populations: 

 

  
      

           . (4) 

 

As inner product matrices are invertible, the matrices 

  
    

 are non singular. Let us assume henceforward that 

any couple of corresponding conditional covariables 

      
        and        

         are positively 

correlated. That assumption (Hypothesis   ) implies that 

the matrices   
    

 are positive, and means that the 

covariable correlation signs, within some conditional 

population, remain the same through the populations. 

 

Thus, any couple of identically labeled component 

parameters,   
 

 and   
  

, now has to satisfy (4) and there 

exists a diagonal positive-definite matrix   
         

 

and a vector   
       

 which satisfy (3). (Let us note 
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that then   
       

    – 
 and that    

     –  
      

    
.) 

 

The whole parameter space   of  is characterized 

henceforth by both (3) and (4). The so-called 

simultaneous clustering method relies (in a t-mixture 

model-based clustering framework) on inference on the 

parameter   on its constrained parameter space. 

 

3. Parsimonious models 
 

Parsimonious models can now be established by 

combining classical assumptions within each mixture on 

both mixing proportions and t-parameters 

(intrapopulation models), with meaningful constraints on 

the parametric link (3) between the conditional 

populations (interpopulation models). 

 

3.1.Intrapopulation models 

 

Inspired by Gaussian parsimonious mixtures one can 

envisage several models of constraints on each t-mixture 

parameter. Inner product matrices within   
(       ) 

may be homogeneous (   
    

) or heterogeneous, 

mixing proportions may be equal ( ) or free (  ), degrees 

of freedom may be homogeneous ( ) or free (  ). These 

models will be called intrapopulation models. 

 

Although they are not considered here, some other 

intrapopulation models based on an eigenvalue 

decomposition of inner product matrices (see Celeux and 

Govaert, 1995) can be envisaged as an immediate 

extension of our intrapopulation models. 

 

Remark. Homogeneous inner product matrices in a t-

mixture should not be mistaken for homoscedasticity. A 

t-random vector has finite moments of 2nd order if and 

only if    . In this case, the covariance matrix is 

obtained by multiplying the inner product matrix by 

    –   . The homoscedasticity of a t-mixture is then a 

consequence of assuming (for instance) that (i) inner 

product matrices are homogenous and (ii) degrees of 

freedom are both homogeneous and greater than 2.  

 

3.2.Interpopulation models 

 

In the most general case the matrices   
    

 are diagonal 

positive-definite and the vectors   
    

 are unconstrained. 

We can also consider component independent situations 

for   
    

 (  
          

) and/or on   
    

(  
          

). 

Other constraints on   
    

 and   
    

 can be easily 

proposed but are not considered in this paper (see 

Lourme and Biernacki, 2010). We can also assume that 

the mixing proportion vectors    
      

   (       ) 

are either free (  
) or equal ( ). These models will be 

called interpopulation models and they have to be 

combined with some intrapopulation model. 

 

Remark. We can see here that some of the previous 

constraints cannot be set simultaneously on the 

transformation matrices and on the translation vectors. 

When the vectors   
    

 do not depend on   for example, 

then neither do the matrices   
    

. Indeed, from (3), we 

obtain the expression   
     

     –   
  –    

     –   
    

, 

and consequently   
     –    

     –   
    

 depends on 

 once   
    

 or   
    

 does. 

 

3.3.Combining inter and intrapopulation models 

 

The most general model of simultaneous clustering is 

noted       
       

             
  . It assumes that 

mixing proportion vectors may be different between 

populations (so the coefficients   
 

 are free on  ), the 

matrices   
    

 are just diagonal positive-definite, the 

vectors   
    

 are unconstrained, and that each mixture 

has heterogeneous product matrices with free mixing 

proportions (thus the coefficients   
 

 are also free on  ) 

and non-homogeneous degrees of freedom. The model 

                       in another example assumes all 

mixing proportions to be equal to    , the matrices   
    

 

and the vectors   
    

 to be component independent and 

each mixture to have both homogeneous product 

matrices and homogeneous   . 

 

Since a simultaneous clustering model consists of a 

combination of some intra and interpopulation models, 

one will have to pay attention to un-allowed 

combinations. It is impossible for example to assume both 

that mixing proportion vectors are free across the diverse 

populations, and that each of them has equal components. 

 

A model                is therefore not allowed. In the 

same way, we cannot assume – it is straightforward from 

the relationship between   
 

 and   
  

in (3) – that both 

the transformation matrices   
    

are free and at the same 

time that each mixture has homogeneous inner product 

matrices. A model      
               is therefore 

prohibited. 

 

Table 1 displays all allowed combinations of intra and 

interpopulation models, leading to 30 models and Table 2 

indicates the associated number   of free parameters. 
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Table 1. Allowed intra/interpopulation model combinations and identifiable models. We note by ‘ ∙ ’ non-allowed 

combinations of intra and interpopulation models, by ‘ ’ allowed but non-identifiable models, and by ‘ • ’ both allowed and 

identifiable models. 

     Intrapopulation models   

            

             

Interpopulation models 

  
   

 
   

   
 

   
   

 
   

   
 

 

      

     
 

     
  • (∙) • (∙) • (•) • (•) • (∙) • (∙) • (•) • (•) 

  
    

  (∙) • (∙) • (•) • (•) • (∙) • (∙) • (•) • (•) 

  
    

   
    

 ∙ (∙) • (∙) ∙ (∙) • (•) ∙ (∙) • (∙) ∙ (∙) • (•) 

 

Table 2. Dimension  of the parameter  in simultaneous 

clustering in case of both equal mixing proportions and 

homogeneous conditional degrees of freedom.  

       
  

      

              –            –   

  
    

 
       

     –    
             –    

  
    

   
    

 •           –   

Note:        denotes the dimension of the parameter component set 

   
      

      
   and            is the size of the   

 
 parameter 

component. If mixing proportions   
 
 are free on both  and  (resp. free on 

  only), then one must add    –    (resp.  – ) to the indicated 

dimensions below. If degrees of freedom are allowed to vary among the 

components, then  –  must be added to the indicated dimensions. 

 
Remark. All proposed models are identifiable except one 

of them            
            , since the latter 

authorizes different component label permutations 

depending on the population, and, as a consequence, 

some crossing of the link between the t-components. 

Indeed, it is easy to show that in this model, any 

component may be linked to any other one. 

 

However, assuming the data arise from this unidentifiable 

model must not be rejected since it just leads to 

combinatorial possibilities in constituting groups of 

identical labels from the components   
 

. In this case, 

simultaneous clustering provides a partition of the data, 

but the practitioner keeps some freedom in renumbering 

the components in each population.  

 

4. Parameter estimation 
 

Notations. In the following sections, indices  and   

respectively vary across          and        , and 

both   and   across        , unless otherwise stated. 

 
4.1.A useful reparameterization 

 
The parametric link between the location parameters and 

the inner product matrices (3) allows for a new 

parameterization of the model at hand, which is both 

useful and meaningful for estimating  . It is easy to check 

that for any identifiable model, each matrix   
    

 is 

unique as well as each vector   
    

. As a consequence it 

makes sense to define for any value of the parameter   

the following vectors:      
 and 

       
    

    
            (        ), where 

  
    

   
 and   

    
   

. Let us denote by   the space 

spanned by the vector             when   scans the 

parameter space  . There exists a canonical bijective 

map between   and  .  Thus   constitutes a new 

parameterization of the model at hand, and estimating   

or   by maximizing their likelihood, respectively on   or 

 , is equivalent. 

 

The parameter   
 appears to be a ‘reference population 

parameter’ whereas           corresponds to a ‘link 

parameter’ between the reference population and the 

other ones. But in spite of appearance the estimated 

model does not depend on the initial choice of the 

population   
. Indeed the bijective correspondence 

between the parameter spaces   and   ensures that the 

model inference is invariant by relabelling the 

populations. 

 

4.2.Invoking a GEM algorithm 

 

The loglikelihood of the new parameter  , computed on 

the observed data, has no explicit maximum, neither does 

its expected completed loglikelihood. But Dempster et al. 

(1977) showed that an EM algorithm is not required to 

converge to a local maximum of the parameter likelihood 

in an incomplete data structure. The conditional 

expectation of its completed loglikelihood has just to 

increase at each M-step instead of being maximized. This 

algorithm, called GEM (Generalized EM), can be easily 

implemented here
1
. Starting from some initial value of 

                                                           
1
 The Matlab code can be obtained from the authors on request. 
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the parameter  , the two following steps alternate. The 

algorithm stops either when reaching stationarity of the 

likelihood or after a given number of iterations. 

 

 E-step: From the current value    of the parameter, 

the average of    

   
    

    
     is computed 

with: 

 

    
 

     

   
    

    
       

 

     
 

    
     

     
   

   
 
   

  

 

and the average of its logarithm is given by: 

 

    
 

              
    

       

       
    

     
 

 
   

     
 

 
 
 

 

where    stands for the digamma function. 

 

The expected component memberships are then 

computed according to: 

 

    
 

     
       

     

    
      

     
     

     
    

 
   

      
     

     
     

    

 

 GM-step: The expectation of   conditional on the 

completed loglikelihood can be alternatively 

maximized with respect to the two following 

component sets of the parameter  :    
    

    
    

   

and    
    

    
   (        ). It provides the 

estimator  +
 that is used as    at the next iteration of 

the current GM-step. The detail of the GM-step is 

given in the following two subsections since it 

depends on the intra and interpopulation model at 

hand. 

 

4.3.Estimation of the reference population parameter   
 

 

From now on, we adopt the convention that for all  ,   
 
 

is the identity matrix of        and   
 
 is the null vector 

of   
. 

 

Mixing proportions   
 
. Setting    

   
 
    
 

 and      
 
   

 
, 

we obtain   
 +

    
    

 when assuming that mixing 

proportions are free,   
 +

       when they only depend 

on the component, and    
 +

     when they depend 

neither on the component nor on the population. 

Degrees of freedom   
 

. We recall here that under the 

conditional linear stochastic link (2), degrees of freedom 

are homogeneous throughout the populations:   
    

  
 

. When degrees of freedom are allowed to be 

heterogeneous on  , each   
 +

 is a solution to the 

equation: 

 

 

   
  
   

    
     

  

 
 

  

 
  

  

 
 

  

 
    

      
    . 

 

Otherwise when degrees of freedom are constrained to be 

also homogeneous on  ,   
 +

 is solution of: 

 

 

   
  
     

    
 –    

  

 
 

  

 
  

  

 
 

  

 
    

 –    
    . 

 

Location parameters   
 

. The component location 

parameters in the reference population are estimated by: 

 

  
 +

  
   

    
     

         
   

    
     

 
, 

where           
 – 

  
 –    

 
. 

 

Inner product matrices   
 

. If the inner product matrices 

are allowed to be heterogeneous within each t-mixture, 

they are then estimated in the reference population by: 

 

  
 +

         
   

    
     

        –  
 +

        –   
 +

 
 
  

 

Otherwise, when assuming that each mixture has 

homogeneous inner product matrices, those of   
 are 

estimated by: 

 

  
 +

       
     

    
     

        –  
 +

        –   
 +

 
 
  

 

4.4.Estimation of  the link parameters   
(   ) 

 

Mixing proportions   
 

. We have   
 +

    
    

 when 

assuming that mixing proportions are free,   
 +

       

when they only depend on the component, and   
 +

 
    when they depend neither on the component nor on 

the population. 

 

Translation vectors   
 

. When the vectors   
 

(       ) 

are assumed to be free for any          , they are 

estimated by: 

 

  
 +

  
 
    
     

   
   

 
    
     

     
   

 +

, 

 

and by : 
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 +

   
   

    
     

     
   

 +

   
  

  
 

  

  
   

    
     

     
   

 +

   
  

  
  

     
   

 +

 

 

when assuming they are equal. 

 

Matrices   
 

. The transformation matrices   
 

 cannot be 

estimated explicitly but, as the expectation of   

conditional on the completed loglikelihood is concave 

with respect to   
 – 

 (whatever are           and 

         ), we obtain   
 +

 by any convex 

optimization algorithm. 

 

Remark. Until now we have assumed that the matrices 

  
 

 were positive. If that assumption is weakened by 

simply fixing the sign of each coefficient of the matrix   
 
 

to be positive or negative, then, first, the identifiability of 

the model is preserved (whatever the model at hand), 

and second the expectation of   conditional on the 

completed loglikelihood, remains concave with respect to 

  
 – 

 on the parameter space  . 

 

We will then always be able to obtain   
 +

 at the GM-

step of the GEM algorithm, numerically at least. 

 

5. Companies financial health 
 

5.1.The data 

 

The prediction of a company's ability to satisfy its 

financial obligations is an important question that 

requires a strong knowledge of the mechanism leading to 

bankruptcy. Du Jardin and Séverin (2010) proposed a 

study of bankruptcy trajectories over the years for a 

deeper understanding of this process. The original first 

sample (year 2002) is made up of 250 healthy firms and 

250 bankrupt ones. The second sample (year 2003) is 

made up of 260 healthy and 260 bankrupt companies. 

The first sample was used to select variables. Forty one 

variables commonly used in the literature were retained, 

including forty ratios and one variable representing a 

balance sheet statement. The ratios were divided into six 

groups; the first represents the performance of the firms 

(such as for instance EBITDA/Total assets), the second 

their efficiency (such as for instance Value added/Total 

sales), the third their financial distress (such as for 

instance financial expenses/Total sales), the fourth their 

financial structure (such as for instance Total debt/Total 

equity), the fifth their liquidity (such as for instance quick 

ratio) and the sixth (and last) their rotation (such as for 

instance Accounts payable/Total sales). Here, we propose 

to use simultaneous t-model-based clustering in order to 

obtain both a typology of the financial health of the 

companies and a quantitative measure of the evolution of 

that typology over a time period. 

 

We selected a subsample of Du Jardin and Séverin (2010): 

some outliers are discarded and only the more 

discriminant variables are kept. The new sample is now 

made up of a first subsample   
 of        companies 

in 2002 (216 healthy and 212 bankrupt companies) and 

of a second sample   
 of        companies in 2003 

(241 healthy and 220 bankrupt companies). Concerning 

the variables, only four financial ratios (   ) expected 

to provide some meaningful information about the health 

of the companies, are retained: EBITDA/Total Assets, 

Value Added/Total Sales, Quick Ratio, Accounts 

Payable/Total Sales. Figure 1 displays both datasets 

(   ) in the canonical plane [EBITDA/Total assets, 

Quick Ratio]. 

 

Note that conditions for using simultaneous clustering 

are all satisfied. First, both samples are described by the 

same set of variables. Second, we expect to obtain two 

partitions (one per year) with the same financial meaning 

over the years, only their descriptive features having 

evolved. 

 

 

 
Figure 1. Financial data in the canonical plane 

[EBITDA/Total Assets, Quick Ratio] for years 2002 and 

2003. 

 

5.2.Results of simultaneous vs. independent clustering 

 

We applied on both financial subsamples each of the 30 

allowed models of simultaneous clustering displayed in 
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Table 1 for different numbers of clusters (       ) 

and with the GEM algorithm (5 trials for each procedure, 

500 iterations and 5 directional maximizations at each 

GM step). The selection of the couple (model,  ) is 

performed by retaining the greatest value of the     

(Integrated Completed Likelihood) information criterion 

(Biernacki et al. 2000) defined by: 

 

             –
 

 
       

     
     
       

     , 

 

where         denotes the maximized likelihood of the 

parameter   computed on the observed data  ,   the 

dimension of  ,   the sample size (   
 
  

) and      
 

 the 

MAP of     
     . Here the     criterion is preferred to the 

    (Schwarz, 1978; Lebarbier and Mary-Huard, 2006) 

since it favors well separated groups, a particularly 

interesting property for obtaining potentially meaningful 

clusters. 

 

Table 3 displays the best     criterion value among all 

models for simultaneous clustering strategy. We notice 

that     retains a three clusters (   ) solution. Table 4 

gives the associated confusion table of this obtained 

partition in comparison to the bankruptcy and healthy 

specifications. 

 

We see that estimated Clusters 1 and 2 are highly 

correlated respectively to failed and not-failed companies, 

whereas Cluster 3 is clearly a group where failed and not-

failed companies are indistinguishable. This new typology 

sheds a new light on the financial health of companies by 

 

Table 3. Best    values, over all models, obtained in 

simultaneous and independent clustering with different 

number of clusters. 

  1 2 3 4 5 

Simultaneous 1169.7 1191.3 1202.0 1183.4 1131.3 

Independent 1154.6 1163.6 1072.1 1127.7 1098.3 

 

Table 4. Confusion table associated to the partition 

provided by the best simultaneous clustering model retained 

by    . 

 Cluster 1 Cluster 2 Cluster 3 

Healthy 3 94 360 

Bankruptcy 56 10 366 

 

Table 5. Confusion table associated to the partition 

provided by the best independent clustering model retained 

by    . 

 Cluster 1 Cluster 2 

Healthy 228 229 

Bankrutpcy 289 143 

 
(a) year 2002 

 
(b) year 2003 

Figure 2. Estimated partition of companies (Healthy, 

Bankruptcy, Indecision) for the two consecutive years (2002, 

2003), obtained by a simultaneous t-mixture model-based 

clustering methodology. 

 

indicating that it is easy to clearly identify healthy and 

unhealthy companies (see Figure 2) for a small number of 

cases (Clusters 1 and 2 have respectively mixing 

proportions equal to 0.07 and 0.13) whereas it is expected 

to be a very hard task for most of them (Cluster 3 has a 

mixing proportion of 0.80). By using the t-parameters of 

each cluster, it is obviously possible to draw a synthetic 

description of each of them (classical analysis in model-

based clustering so not reported here) but we focus on 

the specificity of simultaneous clustering which provides 

information about the evolution of the groups over the 

years. The retained best model is 

                     
   which means that (i) the 
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mixing proportion of each cluster is invariant between 

2002 and 2003 and also (ii) other cluster features 

uniformly evolved over the years. More precisely, the 

associated estimated transition parameters are given by 

 

                                

        –   –        –     –    , 
 

thus the clusters from 2002 and 2003 appear to vary  only 

through the two variables EBITDA/Total Assets and 

Quick Ratio. 

 

This result is meaningful since the two main variables 

able to predict bankruptcy are the liquidity and the 

performance. The change of financial structure is a 

consequence of the evolution of these two variables. We 

can assume that the problems of firms arise from several 

steps. The liquidity ratio collapses before the performance 

ratio. In some cases, even if we can highlight a decrease 

in these ratios, the situation still remains good because 

the other variables (such as financial structure) are strong 

enough to bear the difficulties the firm faces. 

 

For comparison, Table 3 displays also the best     

criterion value among all models for independent 

clustering. We notice now that     clusters are 

retained and the associated confusion table (Table 5) 

indicates that estimated clusters yield poor information 

about the health of companies in comparison to the 

three-component solution given by simultaneous 

clustering. In addition, independent clustering does not 

allow for an easy interpretation of the evolution of the 

groups over the years. Finally, it is worth noting that     

prefers the simultaneous solution to the independent one. 

 

6. Concluding remarks 
 

Simultaneous model-based clustering aims to model not 

only a partitioning of data but also an evolution of it over 

different subsamples. It was illustrated in the t-case on 

data related to the financial health of companies over two 

years. A meaningful three-cluster solution was selected, 

which was not the case with the classical independent 

clustering procedure. We also quantified the estimated 

evolution between the two years. It appears to be 

moderate in this example but it would be interesting to 

extend the study to a larger number of years (    or 

more) for accessing to possibly more changes over more 

distant years. 
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Appendix A 
 

Theorem 1. (Extension of some theoretical result of 

Biernacki et al. 2002) 

 

Let   and   be two real-valued, absolutely continuous and 

symmetric random variables with support  . If some affine 

map from   into   stochastically transforms   into  , then 

there exists another such affine map. In this case, these two 

affine maps are the only   
-class maps from   into   which 

stochastically transform   into  . 

 

Proof. Let us assume that there exists a couple       
 *    such that       . As   is symmetric, there 

exists a real number   such that   –   and   –   are 

identically distributed. It follows that        and 

 –           are identically distributed. 

 

Let   be a map of class   
 from   into   such that 

      . Since   is absolutely continuous,   is strictly 

monotonic. Indeed if   were not strictly monotonic,    
would be null at some point   and the probability density 

function of   would be infinite at     . 

 

In addition, as the support of    is  ,   is surjective from 

  into  . Hence   is a bijection of class   
 from   to  .   

 

Let us assume that   is strictly increasing on   and let us 

denote by    the cumulative distribution function of  . 

For all real  , [   ] amounts to [         ] and to 

[          ]. Since     and        are 

identically distributed as   it follows that          
        . Morevoer since    is a bijection from   into 

     ,          . 

 

Let us assume now that   is strictly decreasing on  . For 

all real  , [   ] amounts to [         ] and to 

[ –          –        ]. Since      and 

 –           are identically distributed as   it 

follows that             –           and so 

     –        . 

 

Corollary 1. 

 

If  and  are two real-valued random variables with t-

distributions and identical degrees of freedom, there exist 

exactly two   
-class maps from   into   which transform 

stochastically   into   and these two maps are both affine. 

 

Proof. This is an immediate consequence of Theorem 1 

since the affine group of   acts transitively on any family 

of univariate t-distributions with identical degrees of 

freedom. 

 

 

Correspondence:  

Christophe.Biernacki@math.univ-lille1.fr  

mailto:Christophe.Biernacki@math.univ-lille1.fr

