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Partial triadic analysis is a multiway analysis method that is a well suited statistical tool to get a clear representation of a 
chronological series of matrices, one for each sample date. It allows the simultaneous principal component analyses of 
several matrices and permits one to find a spatial structure common to every matrix and to study its temporal stability. 
Partial triadic analysis begins by searching for an average table called compromise. The compromise table is then 
analyzed and its reproducibility by each initial table is finally investigated. 

 
A partial triadic analysis was applied to a phytoplankton dataset that was collected in 2006 at six stations in the Marne 
Reservoir, located in France in the Seine catchment area.  The spatial and temporal organizations of the assemblages of 
these different species were derived and hence the existence of some changes in water quality could be assessed since 
micro-organisms, especially phytoplankton species, may be considered as potential indicators of local and more global 
changes in aquatic ecosystems and may thus constitute an excellent biomarker of water quality. This example 
demonstrates the power of partial triadic analysis for depicting the temporal evolution of spatial structures. 

 
The exposition is accessible to readers with an intermediate to advanced knowledge of statistics. Some prior exposure to 
principal component analysis is required for reading the article which can be viewed as a sequel to Bertrand et al. 
(2007). A basic knowledge of R is helpful. 
 
Keywords: Multiway analysis, STATIS-ACT method, partial triadic analysis, principal component analyses, duality 
diagrams. 
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1. Theory 

1.1.  Introduction 

In this case study we investigate the potential of partial 
triadic analysis (PTA), a special kind of multivariate 
analysis. Partial triadic analysis is meant to perform a 
statistical analysis of experiments when the same 
variables are measured on the same individuals at 
different points in time. From a mathematical point of 
view, the aim of a PTA is to analyze a three-way table, 
also called a data cube i.e. a matrix with three subscripts 
Xi,j,k which is seen as a sequence of two-way tables –
matrices with two subscripts Xi,j. 
 
Partial triadic analysis belongs to the family of STATIS 
methods (Lavit 1988). It involves three essential steps: 
the interstructure, the compromise, and the 
intrastructure analysis. 
 
Partial triadic analysis is one of the simplest multiway 
methods (Escoufier 1980). It was derived from triadic 
analysis (Tucker, 1966), described in Jaffrenou (1978) 
and introduced by Thioulouse and Chessel (1987) in 
ecology as “triadic analysis”. This method was renamed 
“partial triadic analysis” by Kroonenberg (1989) to 
highlight the difference with the original triadic analysis. 
It is also known as “Pre-STATIS” or “STATIS on the X” 
in Leibovici (1993) or “PCA-SUP” – PCA of a derived 
two-way supermatrix – in Kiers (1991). PTA has been 
used in several ecological studies (Dolédec and Chessel 
1991, Blanc et al. 1998, Blanc and Beaudou 1998, 
Gaertner 2000, Rossi 2003, Jiménez et al. 2006, Ernoult et 
al. 2006, Carassou and Ponton 2007, Pavoine et al. 2007 
and Rolland et al. 2009). 
 
More precisely, PTA searches for structures that are 
stable along the sequence of two-way tables. Its first step 
is called the interstructure. It corresponds to a global 
representation and gives the “importance” of each table. 
During this step, a matrix of scalar products between 
tables is computed.  
 
The second step, the compromise computation and 
analysis, is the main step of the method. The compromise 
table is computed as the weighted mean of all the tables 
of the series, using the components of the first 
eigenvector of the interstructure as weights. This table 
has the same dimensions and the same structure and 
meaning as the tables of the series. The compromise table 
exhibits the best summary properties of the initial tables. 
It is analyzed by a PCA, providing a picture of the 
structures common to all the tables and a simultaneous 
representation of individuals and variables.  

 
The third step of a partial triadic analysis is the analysis of 
the intrastructure. The rows and columns of all the tables 
of the sequence are projected on the factor map of the 
PCA of the compromise as additional elements. This step 
summarizes the variability of the series of tables around 
the common structure defined by the compromise. 
 
1.2.  Duality diagrams 
 
Partial triadic analysis can be included in a broader 
setting using duality diagrams (Escoufier 1987, Holmes 
2008). The terms duality diagram or statistical triplet are 
often used interchangeably. Such a “triplet” (X, Dp, Dn) 
can be used to define a multivariate data analysis from a 
geometrical point of view. X is the n x p table to analyze, 
Dp the most often diagonal p x p symmetric positive 
definite matrix of column weights and Dn is an n × n 
matrix of weights on the “observations”, which is most 
often diagonal too. 
 
For instance, a principal component analysis (PCA) of a 
matrix Z amounts to the statistical triple (X, Ip, 1/nIn) 
where Xij is given by Zij-(μZ)j with (μZ)j the mean of the jth 
variable. Given a duality diagram and from a theoretical 
point of view, one proceeds to the eigendecomposition of 
the matrix X’DnXDp, if n>p, or of the matrix XDpX’Dn if 
n<p, where X’ is the transpose of the matrix X.  
 
Table 1. Steps of a duality diagram analysis 

Relation used Result 

X’DnXDp =λsus 
Eigendecomposition (λs s

th 
eigenvalue and us s

th eigenvector). 

Gs =λs
1/2us 

Coordinates of the active columns 
(X). 

Fs = XDpus 
Fsup,s = XsupDpus 

Coordinates of the active (X) or 
supplementary (Xsup) rows. 

Gsup,s = λs
1/2 Xsup’DnFs 

Coordinates of the supplementary 
columns (Xsup). 

 
Yet since the numerical algorithms for computing the 
eigendecomposition of a real matrix are far more efficient 
if the matrix is symmetric we actually proceed to the 
eigendecomposition of the symmetric matrix A = 
Dp

1/2X’DnXDp
1/2, if n>p, or of the symmetric matrix B = 

Dn
1/2XDpX’Dn

1/2 if n<p. The eigenvalues of A are the 
same as those of X’DnXDp and the eigenvalues of B are 
the same as those of XDpX’Dn. The eigenvectors of A 
multiplied by Dp

1/2 are those of X’DnXDp and the 
eigenvectors of B multiplied by Dn

1/2 are those of 
XDpX’Dn. In the case of a PCA, this leads to finding an 
eigendecomposition of A=(1/n)X’X or B=(1/n)XX’ and 
thus, since the matrix X is centered, to find an 
eigendecomposition of the covariance matrix of the 
variables Z1,…,Zp which is what PCA is. 
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We will use the formulas summed up in Table  several 
times in what follows. 
 
 
1.3. The STATIS-ACT method 
 
The STATIS-ACT method is an exploratory technique 
of multivariate data analysis which is a generalization of 
principal component analysis. Its goal is to analyze several 
sets of variables collected on the same set of observations. 
It is attributed to Escoufier (1980) and L’Hermier des 
Plantes (1976, see also Lavit et al., 1994), a related 
approach is known, in the English speaking community, 
as procrustes matching by congruence coefficients (Korth 
and Tucker, 1976). For a quick yet thoroughly detailed 
introduction to the STATIS method and some of its 
computational details we point the reader to Abdi and 
Valentin (2007). 
 
The STATIS-ACT method is based on linear algebra and 
especially Euclidean vector spaces (STATIS stands for 
Structuration des Tableaux A Trois Indices de la 
Statistique, ACT stands for Analyse Conjointe de 
Tableaux). It has been devised for multiway data 
situations on the basic idea of computing Euclidean 
distances between configurations of points (Escoufier, 
1973). 
 
Any STATIS analysis is made of three successive steps. 
1. Interstructure: compare and analyze the relationship 

between the different data sets. 
2. Compromise: combine them into a common 

structure called a compromise which is then analyzed 
via PCA to reveal the common structure between 
the observations, see Lazraq (2008) for an inferential 
approach to validating the compromise. 

3. Trajectories: project each of the original data sets 
onto the compromise to analyze communalities and 
discrepancies. 

 
STATIS is used in very different areas such as sensory 
evaluation and food science (Qannari et al. 1995, Schlich 
1996, Martin et al. 2000, Meyners et al. 2000, Meyners 
2002, Chaya et al. 2004, Perez-Hugalde et al. 2004, Perrin 
et al. 2008), molecular imaging (Coquet et al. 1996) brain 
imaging (Kherif et al. 2003), ecology (Dolédec 1988, 
Aliaume et al. 1993, Simier et al. 1999, Cadet et al. 2005), 
coastal marine ecology (Gaertner et al. 1998, Licandro 
and Ibanez 2000, Lekve et al. 2002, Gailhard et al. 2003, 
Muiño et al. 2003, Simier et al. 2004, Lobry et al. 2006), 
limnology (Centofanti et al. 1989, Anneville et al. 2002), 
chemometrics (Stanimirova et al., 2004) and marketing 
(Perez Aparicio et al. 2007). 
 

The main idea of the ACT technique is to compare 
configurations of the same observations obtained in 
different circumstances. As a consequence, a measure of 
similarity between two configurations has to be 
introduced. This is equivalent to defining a distance 
between the corresponding scalar product matrices. We 
now follow the article of Lavit et al. (1994) to give more 
insight into the core of the STATIS-ACT method. 
 
1.4.  Partial triadic analysis 
 
From a statistical point of view, partial triadic analysis is a 
multivariate method that analyzes matrices in a three 
dimensional data array. It is based on the logic of 
Principal Component Analysis (PCA). It is designed to 
study simultaneously several sub-matrices of quantitative 
data and to detect within the structure any pattern 
common to these different sub-matrices in order to 
extract a multivariate structure that is expressed through 
the different dates, see Figure 1. 
 
PTA is a STATIS-like method; the only noticeable 
difference between PTA and STATIS is that, since the 
individuals and the variables are identical from a table to 
another, the steps of the STATIS analysis are applied 
directly to the observed tables Xk instead of the scalar 
products Wk=Xk’Xk derived from the observed tables. It 
is the reason why PTA is also called STATIS on the “X”. 
 

 
Figure 1. PTA: a method from the STATIS family 
Note. Interstructure: similarities between the different tables. 
Compromise: common structure derived from each table. 
 
1.4.1. Interstructure analysis 
 
The derivation of the interstructure is based on the 
concepts of vector variance VarV, vector covariance 
CovV, and vector correlation RV (Escoufier, 1973). Let 
(S, Dp, Dn) and (T, Dp, Dn) be two duality diagrams. The 
vector covariance CovV(S,T) between the two duality 
diagrams (S, Dp, Dn) and (T, Dp, Dn) is defined by: 
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( ) ( )pnTDDSTS 'trace,CovV = . 

 
The vector variance VarV(S) of the duality diagram (S, 
Dp, Dn) is given by: 

( ) ( )pnSDDSSSS 'trace),(CovVar VV == . 

 
The distance d2(S,T’) = Tr[(Dn

1/2SDp
1/2-

Dn
1/2TDp

1/2)’(Dn
1/2SDp

1/2-Dn
1/2TDp

1/2)] deduced from the 
scalar product <S|T> = Tr(Dp

1/2S’Dn
1/2Dn

1/2TDp
1/2) = 

Tr(S’DnTDp) = CovV(S,T) can be used to compare the 
Xi’s. The square of the norm of a duality diagram is thus 
equal to CovV(S,S) = VarV(S). 
 
Another question that naturally arises is: Should we 
compare the Xk’s or the normed Xk’s? 
 
A large distance d2(Xk,Xk’) points out a strong difference 
between Xk and Xk’. Is it a difference in shape or a 
difference in size? To eliminate the second effect, we deal 
with the normed duality diagram deduced from (Xk, Dp, 
Dn): 
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As a consequence, we compute the normed scalar 
products, the cosine, between the duality diagrams (Xk, 
Dp, Dn) and (Xk’, Dp, Dn), also known as the RV 
correlation coefficient: 
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Let C be the cosine matrix, also called the interstructure 
matrix, be a real square matrix of order K whose generic 
term ckk’ is the cosine between the Xk and Xk’: 

[ ]( )( ) ⋅= ≤≤ KkkkkV XXRC ',1',  

 
The computation of the RV coefficient matrix between 
the tables allows the comparison of the tables and the 
representation of the proximity between tables (Robert 
and Escoufier, 1976). 
 
In the case of a PTA where we deal with standardized 
variables and always use the norm Dn=In, Dp= 1/pIp, the 
vector covariance between the tables Xj and Xk is the sum 
of the correlations between identical couples of variables: 
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The vector variance of table Xj is hence equal to: 
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Consequently, the RV coefficient is the mean of the 
correlations between identical couples of variables: 
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To plot the K stages in a h-dimensional space, we use the 
least squares approximation Ch of C, equal to the h first 
elements of the spectral decomposition σ1p1p’1+…+ 
σrprp’r = P∑P’ of C, with P’P=I. Stage k is plotted as a 
point Mk whose coordinates are the h first elements of the 
kth row of P∑1/2. The points M1, …, Mk satisfy 
<OMk|OMk’>=(Ch)kk’. The loss function is: 

( )[ ]∑ ∑∑
+=′

′ =−=−
k

r

hl
l

k
kkhh CCCC

1

222 σ . 

 
On such a graph, scalar products are not easily readable, 
except for the norm kX  approximated by the length of 
the vector OMk and for the scalar product between 
normed Xk and normed Xk’, approximated by the cosine 
of (OMk,OMk’). The projected distance induced by the 
least squares approximation is systematically lower than 
d2(Xk,Xk’). 
 
1.4.2. Compromise construction 
 
At this point, in the STATIS method, a positive semi-
definite assumption is necessary to derive the key 
Property 1 whereas this restrictive assumption was not 
necessary in the interstructure derivations.  
 
Property 1 (Lavit et al. 1994). Let W1 = σ1p1p1’ be the 
first element of the spectral decomposition of the interstructure 
matrix W. Components of p can be chosen positive. 
 
This property is no longer true for the PTA since we work 
on the X’s tables instead of dealing with the W’s. As a 
consequence, if all the Xs tables are not positively 
correlated with the first component, C1=σ1p1p’1, or if any 
two of the Xs tables are negatively correlated, then we 
will be unable to use the PTA and will have to use the 
STATIS method instead. We now assume that the 
components of p can be chosen positive. 
 
Moreover if all the components of the C matrix are 
positive, then, on the plot of the K stages, cosines are 
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positive and thus all the points Mk are situated inside a 
convex cone. 
 
Definition 1 (Lavit et al. 1994). The n×p compromise 
matrix X+ is defined as a weighted sum ∑kαkXk. The 
coefficient αk is the coordinate of stage k in the one-
dimensional plot deduced from the first element C1 of the 
spectral decomposition of C. 
 
The C matrix is not centered, thus the first eigenvector of 
C highlights what is common to the different tables. 
Tables with larger values on the first eigenvector will 
have a larger weight. 
 
Property 3 (adapted from Lavit et al. 1994). The 
compromise matrix X+=∑kαkXk is the linear combination of 
the Xk’s which is the most closely related to the Xk’s. In other 
words, X+ maximizes: 
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Proof (adapted from Lavit et al. 1994). We develop the 
numerator in: 
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In the spectral decomposition of C, p1 is the eigenvector 
of CC’=C2 associated to the largest eigenvalue. Thus the 
quotient can be written as the Rayleigh quotient 

2' ' /x CC x x  with x=(α1,…,αk)’, which is maximum for 
x=p1. Note that this quotient is also maximum for 

2
1 1/p p . As a consequence we can add the constraint 

that ∑kαk
2 = 1 in the definition of the compromise matrix 

X+. 
 
In the case of a PTA for which we deal with standardized 
tables we have: 
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which is maximum, under the constraint∑ kαk
2 = 1, for 

(α1,…,αk)’=p1.  
 
What does the compromise mean? If Xk and Xk’ 
correspond to similar tables in shape and size, the angle 
(OMk,OMk’) is small and the lengths OMk  and 'OMk  
are nearly the same. This case leads to identical values for 
αk and αk’. On the other hand, a large difference between 

the two tables induces either a large angle (OMk,OMk’) or 
unequal lengths for OMk and OMk’ and hence different 
values for αk and αk’ in both cases. Consequently C gives 
relatively less weight to outliers, and leads to a 
compromise configuration which reflects the inter-
element distances as they are seen by the majority. 
 
We now provide a graphical representation of the 
compromise. To plot the compromise X+ in a h-
dimensional space, we use the least squares 
approximation X+

h of X+. We compute a non-centered 
non-scaled PCA of the transpose of the compromise 
matrix X+ and retain the h first elements of the 
eigendecomposition (1/p)X+X+’ = P∆P-1

 with PP-1=I. 
The duality diagram to be used is (X+’, Dn=In, 
Dp=1/pIp). Both column element j and row element i can 
be plotted as a point Nj whose coordinates are the h first 
elements of the jth row of P∆1/2 and a point Mi whose 
coordinates are the h first elements of the ith row of 
X+’P. 
 
The loss function is 
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1.4.3. Highlighting the intrastructure 
 
The last step is called the study of the intra-structure or 
of the reproducibility of the compromise. 
The original observed tables are projected separately onto 
the compromise to highlight which one fits the 
compromise best and whether some of them share the 
same patterns. This step is often summed up by putting 
together and comparing several figures whose coordinates 
can be computed with the following steps: 
 
1. the projection on the first plane of principal axes of 

the compromise of the principal axes of the 
individual PCA of each  observed table. 

2. projection of the columns of the original observed 
tables Xk on the compromise X+, i.e. treating them as 
complementary columns in the non-centered non-
scaled PCA of the compromise. 

3. projection of the rows of the original observed tables 
Xk on the compromise X+, i.e. treating them as 
complementary rows in the non-centered non-scaled 
PCA of the compromise. 

4. the first principal components plane of the 
compromise of the principal components of the 
individual PCA of each observed table. 

 
To summarize, using the partial triadic analysis method as 
a space-time data analysis tools may improve the 
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knowledge of the dynamics of the linear relationships 
between individuals and variables. 
 
We now proceed to the detailed analysis of an example. 
 
2. Biological background 
 
2.1.  Aims and scope of the study 
 
Micro-organisms, especially phytoplankton species, may 
be considered as potential indicators of local and more 
global changes in aquatic ecosystems and may thus 
constitute an excellent biomarker of water quality. 
Assessing biological, chemical and physical influence on 
phytoplankton regulation is a key process for 
understanding population structure and dynamics, 
population diversity and succession, and to propose, if 
necessary and when possible, a human-hand control 
before any excessive algal proliferation could occur. Such 
issues are of main concern to help scientists and water 
managers to make it possible for large-body reservoirs, 
lakes and ponds, to reach the “good ecological state” 
recommended by the Water Framework Directive 
(WFD) by 2015.  
 
One goal of this statistical analysis was to identify both 
the spatial and temporal phytoplankton structure and 
dynamics in the Reservoir Marne, located in France in 
the Seine catchment area, see Figure 1. The Reservoir 
Marne is often referred to as one of the largest reservoirs 
in Western Europe: its area is equal to 48 km2. In 2006, 
i.e. the first year of the project, the reservoir was sampled 
once a month in March and April and then once every 
two weeks between May and September.  
 
To assess spatial heterogeneity, six stations, see Figure 2, 
were investigated at a depth of three meters. Stations K 
and J correspond to two nautical basins, station G 
receives water from two “feeding” channels, stations I and 
H are close to the restitution channels and finally station 
N is more or less in the middle of the reservoir.  
 
This sampling strategy was chosen in order to obtain the 
best picture of the structure of the microbial organisms 
considering also human feasibility in terms of sampling 
and analysis. More details on the experimental protocol 
and the sampling strategy can be found in Rolland et al. 
(2009). 
 
2.2.  Selection of species 
 
Among the 282 phytoplankton species originally 
identified in the Reservoir Marne, 112 species were 
selected to be included in the multiway analysis, see 2 for 

details. The criterion for selection was that the relative 
abundance and biovolume of the species would be greater 
than a given value set to 0.01%. It is a commonly used 
pattern of selection in phytoplankton community ecology 
studies. 
 
Table 2. Phytoplankton family counts and color. 

Phytoplankton 
Family 

Total 
Species 

Selected 
Species1

 

Color 

Cryptomonads 7 6 red 
Cyanobacteria 33 18 blue 
Desmidiates 26 4 dark red 
Diatoms 46 14 magenta 
Dinoflagellates 15 6 cyan 
Euglenoids 16 4 dark grey 
Golden Algae 22 13 orange 
Green Algae 111 47 green 
Yellow-green 
Algae 

6 1 black 

3. Statistical analysis 
 
3.1.  Features of the dataset 
 
Since the reservoir is not uniform. as revealed by the 
phytoplankton abundance and structure which greatly 
vary from one sampling station to another, and since a 
clear seasonal dynamic was observed for the different 
microbial communities with main differences on a 
vertical scale, multiway analyses, such as partial triadic 
analysis (PTA), a STATIS-like method, (Lavit et al. 
1994), multiple coinertia analysis, (Chessel and Hanafi 
1996), or statico, (Thioulouse et al. 2004), are well suited 
statistical tools to get a clear representation of the spatial 
and temporal organization of the assemblages of the 
different species.  
 
These analyses can be performed using the ade4, (Chessel 
et al. 2004, Dray et al. 2007) package for the R software, 
(R Development Core Team 2009), and several 
customized functions written by the first author and 
available with the dataset. Additionally, in order to shed 
light on the associations between the species and the axes 
constructed by the partial triadic analysis, the Kendall 
correlation coefficient between the biovolume of the 
phytoplankton species and their factorial coordinates on 
the first three axes of the compromise were computed.  
 
This correlation analysis was also performed between the 
biovolume of the phytoplankton species and each station 
during the analysis involving the reproducibility of the 
compromise among the 6 sampling stations. 

                                                            
1 The selection of species was carried out following the rules 
detailed in Section 2 of the article. 
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3.2. Partial triadic analysis 
 
Let XG, XH, XI, XJ, XK and XN the matrices of biovolumes 
values whose 112 columns are the species and 11 rows 
are the sampling times. Each of these matrices is centered 
and scaled. Thanks to Figure 2, one easily understands 
why this dataset turn out to be a cube of data. 
 

 
Figure 1. Location of the reservoir in France 
 
 

 
Figure 2. Location of the sampling stations in the reservoir 
 
We assume that all the tables XG, XH, XI, XJ, XK and XN 
share the same column weights Dp, and that they also 
share the same row weights Dn, which leads, in our case, 
to six duality diagrams (XG,Dp,Dn), (XH,Dp,Dn), 
(XI,Dp,Dn), (XJ,Dp,Dn), (XK,Dp,Dn), (XN,Dp,Dn). 
 
3.2.1. Interstructure analysis 
 
This is the first step of the analysis and is intended to 
provide a global description of the sampling points as a 

function of the typology of the sampling dates, extracting 
the information common to all sampling dates. The 
objects of this analysis are the variables by samples. It 
consists of the comparison of the structure of the 6 
different sub-matrices (stations) and the identification of 
the stations sharing a similar annual structure. The 
computation of the RV coefficient matrix between 
stations allows the comparison of the stations and the 
representation of the proximity between stations. A 
byproduct of this step is to attribute a weight to each 
station sub-matrix. 
 

Phytoplankton composition table
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Figure 2. Phytoplankton data composition via a PTA 
 
We begin by creating a ktab object that is designed to 
match the structure of the cube of data and allows the 
use of the functions of the ade4 package to perform 
partial triadic analysis. 
 
> library(ade4) 
> ktabbiovol3mscaled <- ktab.list.df( 
lapply(rapply(lapply(lapply(split( 
cbind(codes$Lettre,biovol3m), codes$Lettre), 
function(x) {return( x[,-1])}),scale), 
function(XX) {apply(XX, c(1,2), function(ll) 
{if(!is.nan(ll)){ll} else {0}})}, 
how="replace"),as.data.frame)) 
> row.names(ktabbiovol3mscaled) <- 
c("06/03/2006","04/04/2006","03/05/2006","07/
06/2006","28/06/2006","04/07/2006","24/07/200
6","07/08/2006","22/08/2006","05/09/2006","19
/09/2006") 

We use the following R code to compute the C matrix: 
 
> RV.comp <- function(mat1,mat2) 
{return(sum(diag(t(as.matrix(mat1))%*%as.matr
ix(mat2)))/sqrt(sum(diag(t(as.matrix(mat1))%*
%as.matrix(mat1)))*sum(diag(t(as.matrix(mat2)
)%*%as.matrix(mat2)))))} 
> (RVs <- matrix(NA,nrow=6,ncol=6, 
dimnames=list(c("G","H","I","J","K", 
"N"),c("G","H","I","J","K","N")))) 
> for(ii in 1:6){for(jj in 1:6){RVs[ii,jj] <- 
RV.comp(ktabbiovol3mscaled[[ii]],ktabbiovol3m
scaled[[jj]])}} 

We get, in a readable format for matrices: 
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 G H I J K N 
G 1.000 0.322 0.358 0.219 0.284 0.334 
H 0.322 1.000 0.526 0.397 0.265 0.576 
I 0.358 0.526 1.000 0.415 0.234 0.549 
J 0.219 0.397 0.415 1.000 0.334 0.410 
K 0.284 0.265 0.234 0.334 1.000 0.301 
N 0.334 0.576 0.549 0.410 0.301 1.000 

This is the same matrix as the one derived using the pta 
function of the ade4 package: 
 
pta1 <- pta(ktabbiovol3mscaled, scan = FALSE, 
nf=4) pta1$RV 
 

 G H I J K N 
G 1.000 0.322 0.358 0.219 0.284 0.334 
H 0.322 1.000 0.526 0.397 0.265 0.576 
I 0.358 0.526 1.000 0.415 0.234 0.549 
J 0.219 0.397 0.415 1.000 0.334 0.410 
K 0.284 0.265 0.234 0.334 1.000 0.301 
N 0.334 0.576 0.549 0.410 0.301 1.000 

 
We now perform the eigendecomposition of the cosine 
matrix in order to reveal the structure between the 
matrices: 

C=PDP’ with P’P=I, 
where P is the matrix of eigenvectors of C and 
D=diag(d1,…,d6) the diagonal matrix of the eigenvalues 
sorted by decreasing absolute values 

61 dd ≥≥" . 

 
An element of a given eigenvector represents the 
projection of one sub-matrix on this eigenvector. Thus 
the studies can be represented as points in the eigenspace 
and their similarities visually analyzed. The matrix of the 
projections is computed using the formula 

2
1

PDG = . 
All the elements of the cosine matrix C are positive; as a 
consequence the six matrices are positively correlated 
with the first component. The coordinates of the first 
eigenvector share the same sign which we choose to be 
positive. 
 
The following R code computes the P and D matrices. 
We compare the results with those of the pta built-in 
function and begin with the eigenvalues of the C matrix. 
> eigendecomp <- eigen(x=RVs, symmetric=TRUE) 
> (eigenvalues <- eigendecomp$values) 
[1] 2.8840258 0.8624162 0.7877673 0.5845975 
0.4637148 0.4174784 
> pta1$RV.eig 
[1] 2.8840258 0.8624162 0.7877673 0.5845975 
0.4637148 0.4174784 
> eigendecomp$vectors[,1] 
[1] -0.3398160 -0.4546875 -0.4533865 -
0.3928325 -0.3156219 -0.4672157 
> if(any(eigendecomp$vectors[,1] < 0)) 

eigendecomp$vectors[,1] <- -
eigendecomp$vectors[,1] 
> eigendecomp$vectors[,1] 
[1] 0.3398160 0.4546875 0.4533865 0.3928325 
0.3156219 0.4672157 
> D <- diag(eigenvalues) 
> dimnames(D) <- list(c(paste("axis", 
1:6,sep="")),c(paste("axis",1:6, sep=""))) 
> D 

 axis1 axis2 axis3 axis4 axis5 Axis6 
axis1 2.884 0.000 0.000 0.000 0.000 0.000 
axis2 0.000 0.862 0.000 0.000 0.000 0.000 
axis3 0.000 0.000 0.788 0.000 0.000 0.000 
axis4 0.000 0.000 0.000 0.585 0.000 0.000 
axis5 0.000 0.000 0.000 0.000 0.464 0.000 
axis6 0.000 0.000 0.000 0.000 0.000 0.417 

 
> P <- eigendecomp$vectors 
dimnames(P) <- 
list(c("G","H","I","J","K","N"), 
c(paste("axis",1:6,sep=""))) 
> P 
 

 axis1 axis2 axis3 axis4 axis5 axis6 
G 0.340 -0.303 0.795 0.360 0.171 0.050 
H 0.455 0.300 -0.007 -0.338 0.537 -0.548 
I 0.453 0.315 0.073 0.085 -0.781 -0.269 
J 0.393 -0.084 -0.561 0.694 0.199 0.054 
K 0.316 -0.809 -0.220 -0.397 -0.171 -0.101 
N 0.467 0.240 -0.021 -0.330 0.060 0.782 

 
We now compute the matrix G. 
> P%*%sqrt(D) 
 

 axis1 axis2 axis3 axis4 axis5 axis6 
G 0.577 -0.281 0.705 0.275 0.116 0.032 
H 0.772 0.279 -0.007 -0.258 0.366 -0.354 
I 0.770 0.292 0.064 0.065 -0.532 -0.174 
J 0.667 -0.078 -0.498 0.531 0.135 0.035 
K 0.536 -0.751 -0.195 -0.304 -0.117 -0.066 
N 0.793 0.222 -0.019 -0.253 0.041 0.505 

 
> pta1$RV.coo 
 

 IS1 IS2 IS3 IS4 
G 0.577 0.281 0.705 -0.275 
H 0.772 -0.279 -0.007 0.258 
I 0.770 -0.292 0.064 -0.065 
J 0.667 0.078 -0.498 -0.531 
K 0.536 0.751 -0.195 0.304 
N 0.793 -0.222 -0.019 0.253 

 
Figure 5 displays these projections of the sampling 
stations onto the first and second components. 
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3.2.2. Construction of the compromise 
 
The second step is the construction of the compromise 
and its analysis involves the building of a mean matrix of 
maximum inertia (referred to as the compromise matrix). 

 G 

 H  I 

 J 

 K 

 N 

Interstructure 

 Eigenvalues 

 
Figure 5. Temporal interstructure derived from each 
sampling station table and their closeness according to the 
Axis1 and Axis2 computed from the partial triadic analysis. 
 
It is derived from the initial sub-matrices in proportion to 
the weight vector α=(αG, αH, αI, αJ, αK, αN) that is 
obtained from the PCA of the cosine matrix. The weights 
are obtained by re-scaling the elements of the first 
eigenvector of C so that the sum of their squares is equal 
to one. The C matrix is not centered, thus the first 
eigenvector of C highlights what is common to the 
different sub-matrices. As a consequence, sub-matrices 
with larger values on the first eigenvector are more 
similar to the other sub-matrices and therefore will have a 
larger weight. 
 
> alpha <- eigendecomp$vectors[,1]/ 
sum(eigendecomp$vectors[,1]^2) 
> names(alpha) <- c("G","H","I","J", "K","N") 
> alpha 
        G         H         I 
0.3398160 0.4546875 0.4533865 
        J         K         N 
0.3928325 0.3156219 0.4672157 

> tabw_ <- pta1$tabw 
> names(tabw_) <- pta1$tab.names 
> tabw_ 
        G         H         I 
0.3398160 0.4546875 0.4533865 
        J         K         N 
0.3928325 0.3156219 0.4672157 

 
The compromise matrix X+ is defined by:  

.XXXX NNHHGG ααα +++=+ "  
It is a matrix of biovolumes values with 112 columns – 
the species – and 11 rows – the sampling times – just as 
for the observed matrices XG, XH, XI, XJ, XK and XN. The  

 d = 0.5  Compromise 
 06/03/2006 

 04/04/2006 

 03/05/2006 
 07/06/2006 

 28/06/2006  04/07/2006 
 24/07/2006 

 07/08/2006  22/08/2006 

 05/09/2006 

 19/09/2006 

 Eigenvalues 

 
Figure 6. First and second axes of the compromise for the 
partial triadic analysis with the temporal evolution of the 
phytoplankton community. 
 
actual value of the compromise matrix X+ was computed 
using the following R code and its transpose is given 
Appendix 1. See also Figures 6 and 7. 
 
> Comp <- 0 
> for(ii in 1:6){Comp<-Comp+alpha[ii] 
+ *as.matrix(ktabbiovol3mscaled[[ii]] 
+ )} 
 
In the compromise matrix, a greater importance is thus 
given to stations which have a similar structure. This 
leads to the establishment of a common temporal 
typology shared by those stations; in other words, the 
compromise will express the spatially stable part of the 
annual structure. 
 
3.2.3. How representative is the compromise matrix? 
 
The compromise matrix X+ maximizes the inertia of the 
combined biovolume values matrices 

 under the constraint that 
. 

NNHHGG XXX ααα +++ "
12

N
2
H

2
G =+++ ααα "

 
It is the best aggregate of the original matrices that lies in 
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the blunt convex cone2 spanned by the original observed 
matrices yet it is a desirable property to be able to assess 
the quality of this aggregate. A common way to achieve 
this aim is to compute: 

 
 

 d = 2 

 Compromise 

 d = 2 
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 Compromise  
Figure 7. First and second axes of the compromise for the 
partial triadic analysis with phytoplankton species colored by 
family and projected on the compromise of the partial triadic 
analysis. 
 

⋅==
)()(

 compromise ofQuality 11

Ctr
d

Dtr
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> (eigenvalues/sum(eigenvalues))*100 
[1] 48.067097 14.373604 13.129454  9.743292  
7.728580  6.957973 

> pta1$RV.eig/sum(pta1$RV.eig)*100 
[1] 48.067097 14.373604 13.129454  9.743292  
7.728580  6.957973 

 
The quality of the compromise we just computed is 
approximately equal to .48. So we can say that the 
compromise “explains” 48% of the inertia of the original 
set of observed matrices. 
 
The cos2 is an indicator of how much the compromise 
expresses the information contained in each sub-matrix. 
The following pta built-in function computes the cos² 
between the six sub-matrices and the compromise. 
 
> pta1$cos2 
        1         2         3 

                                                            

able weights and cos2 for each of the observed original 

2 A blunt convex cone is a subset of non-zero elements of a vector 
space that is closed under linear combinations with positive 
coefficients. 

0.5788371 0.7714891 0.7708412 
        4         5         6 
0.6624583 0.5372276 0.7949918 

 
T
matrices can be plotted together as on Figure 8. 
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Figure 8. Table and Cos² Weights. 

.2.4. Analyzing the compromise 

e now proceed to the analysis of the compromise 

 
3
 
W
matrix X+. The duality diagram to be used is (X+’, Dn=In, 
Dp=(1/p)Ip) which amounts to a non-centered non-
scaled PCA of the transpose of the compromise matrix 
X+. Since in our case 112=p>n=11, we need to 
compute the eigendecomposition of the matrix 
(1/p)X+X+’. Let Dda and Pda be this decomposition: 

'PDP'XX
112

1
=++  with ,k kjm, 

dadada

s claimed, we find the same eigenvalues for the 

 
> Compde <- eigen(Comp%*%t(Comp))/112 
> Compde$values[1:10] 
 [1] 9.8226486 5.2754266 2.5594261 2.1513154 
2.0738068 1.6547172 1.2283484 1.0386681 
0.8110492 0.5368458 
> dudi.pca(t(Comp), scannf=FALSE, center = 
FALSE, scale = FALSE)$eig 
 [1] 9.8226486 5.2754266 2.5594261 2.1513154 
2.0738068 1.6547172 1.2283484 1.0386681 
0.8110492 0.5368458 
> pta1$eig 
 [1] 9.8226486 5.2754266 2.5594261 2.1513154 
2.0738068 1.6547172 1.2283484 1.0386681 
0.8110492 0.5368458 
 
A
compromise analysis with any of the three methods we 
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Compde$values[1:10] / sum( 

6202  7.923156  

decomposition amount to 56 % 

e now compute the coordinates of the sampling dates 

used. 
 
> 
+ Compde$values[1:10]) * 100 
 [1] 36.176184 19.429057  9.42
7.637697  6.094217  4.523928  3.825348  
2.987042  1.977168  
 

he first two axes of the T
of the total inertia of the compromise. The row normed 
scores are given by the matrix Pda or pta1$l1. 
 
W
on the first three axes of the eigendecomposition of the 
compromise using the formula, see Table : 

2
1

DPG = . dadada
 

Pda <- Compde$vectors[,1:3] 
]) 

) 

> 
> Dda <- diag(Compde$values[1:3
> Gda <- Pda %*% sqrt(Dda) 

(pta1$li> dimnames(Gda) <- dimnames
> Gda 
 

 Axis1 Axis2 Axis3 
06/03/2006 -0.925 1.406 0.151 
04/04/2006 -0.945 1.015 -0.085 
03/05/2006 -0.843 -0.351 0.170 
07/06/2006 -0.725 -0.285 0.565 
28/06/2006 -0.495 -0.841 0.254 
04/07/2006 -0.472 -0.811 -0.062 
24/07/2006 -0.227 -0.706 -0.471 
07/08/2006 0.521 0.088 -0.944 
22/08/2006 0.868 0.131 -0.617 
05/09/2006 1.762 0.413 0.321 
19/09/2006 1.481 -0.060 0.718 

 
a1$li pt

 

 Axis1 Axis2 Axis3 
06/03/2006 -0.925 1.406 0.151 
04/04/2006 -0.945 1.015 -0.085 
03/05/2006 -0.843 -0.351 0.170 
07/06/2006 -0.725 -0.285 0.565 
28/06/2006 -0.495 -0.841 0.254 
04/07/2006 -0.472 -0.811 -0.062 
24/07/2006 -0.227 -0.706 -0.471 
07/08/2006 0.521 0.088 -0.944 
22/08/2006 0.868 0.131 -0.617 
05/09/2006 1.762 0.413 0.321 
19/09/2006 1.481 -0.060 0.718 

 
e coordinates of the species on the first three axes of 

 
(Fes <- t(Comp)%*%Pda) 

n matrix M  is thus given by: 

 
ote that the column normed scores are given by the 

 (Fes%*%solve(sqrt(Dda))) 

hows the coordinates of the species that are 

which.min(Ges[,1]) 
rmis  

,] 

1]),] 

es[,2]),] 

issim  

ne can then easily produce Figures 9, 10, 11 and 12. 

ome insights on the meaning of the two axes of the 

5),N=nrow(Gda)

mp[,k], Th
the eigendecomposition of the compromise are given by, 

see Table : 

daes P'XF +=  

> 
> pta1$co 
 

he projectioT es

daes PM = . 

N
matrix FesDda

-1/2 or pta1$c1. 
 
>
> pta1$c1 
 

ppendix 2 sA
the result of these computations. One can find “extreme” 
species on both axes: 
 
> 
Cryptomonas.rostratifo
                        62  
> res.PCAc[which.min(Ges[,1])
      Dim.1       Dim.2  
-0.76752258  0.08528029  
> which.max(Ges[,1]) 

na  Trachelomonas.volvoci
                    111  
> res.PCAc[which.max(Ges[,
      Dim.1       Dim.2  
 0.52727273  0.38181818  
> which.min(Ges[,2]) 
Dinobryon.divergens  
                 50  
> res.PCAc[which.min(G
      Dim.1       Dim.2  
 0.09090909 -0.70909091  
> which.max(Ges[,2]) 

ngustFragilaria.ulna.var.a
                             96  
> res.PCAc[which.max(Ges[,2]),] 

       Dim.1      Dim.2      Dim.3
-0.5871807  0.1100964 -0.3669879 
 
O
 
S
compromise can be found using the Kendall correlation 
coefficient to spotlight associations between the first two 
axes and the species, see Figures 13, 14, and 15. 
> library(SuppDists) 

) >qKendall(c(0.005,0.99
[1] -0.5636364  0.5636364 

=nrow(Gda)) >qKendall(c(0.025,0.975),N
[1] -0.4545455  0.4545455 
> res.PCAc <- Ges[,1:2] 
> for(j in 1:2) { 

]) { + for(k in Ges[[1]
+ res.PCAc[k,j] <-cor(Co
+ Gda[,j], method=c("kendall")) 
+ }} 
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Highlighting the intrastructure 

inally, the last step is called the study of the intra-
 

3.2.5. 
 
F
structure or of the reproducibility of the compromise. The 
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Figure  9. Biovolumes per station and dates of the 

Figure 7. phytoplankton specie lying on the outmost right on 
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Figure 10. Biovolumes per station and dates of the 

gure 7. 

x original observed subsets are projected separately onto 

om a mathematical point of view, one needs to 

phytoplankton specie lying on the outmost left on Fi
 
si
the compromise to highlight which station fits the 
compromise and whether some of them share the same 
patterns. This step can be summed up by putting together 
and comparing several figures, as shown in Figure 16. 
 
Fr

compute the projection of the original observed tables 
XG, XH, XI, XJ, XK and XN on the compromise, by treating 
them as complementary tables in the non-centered non- 
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Figure 11. Biovolumes per station and dates of the 
phytoplankton specie lying lower left on Figure 7. 
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Figure 12. Biovolumes per station and dates of the 

aled PCA of the compromise. Table 1 teaches us how 

s of 

phytoplankton specie lying upper left on Figure 7. 
 
sc
to deal with complementary individuals or variables. 
As for the complementary rows, for instance the row
the XG matrix, we compute their coordinates using the 
formula: 

daGNes, P'XF = . 

The same can be done for the rows of tables XH, XI, XJ, 
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XK and XN. The following R code deals with the rows of 
XG. 
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Figure 15. Significant Kendall correlations, at a 1% level,

s for the complementary columns, for instance the 

 
between the 3rd axis of the compromise and the 
phytoplankton species biovolumes. 
 
 Figure 13. Significant Kendall correlations, at a 1% level, 

between the 1st axis of the compromise and the 
phytoplankton species biovolumes. 
 

A
columns of the XG matrix, we compute their coordinates 
using the formula: 

1
2

es,N
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G (1/ ) G da dap X P D
−

= . 

 
he R code to derive the coordinates of the sampling 

GdaG <- 1/112*as.matrix( 
%*%Fes 

ts of the second column of Figure 

s a consequence, one needs to first perform a separate 

T
times on the first three axes of the compromise is: 
 
> 
+ ktabbiovol3mscaled[["G"]])
+ %*%solve(sqrt(Dda)) 
> GdaG 

Tli[1:11,] > pta1$
 

his leads to the six ploT
16. The plots on the first and the fourth columns of 
Figure 16 are the projection on the first plane of principal 
axes of the compromise of the principal axes of each of 
the six matrices XG, XH, XI, XJ, XK and XN and on the first 
plane of principal components of the compromise of the 
principal components of each of these matrices. 
 

Figure 14. Significant Kendall correlations, at a 1% level,

FGes <- t(ktabbiovol3mscaled[[ 

,] 
 in the third column of Fig. 16. 

 A
between the 2nd axis of the compromise and the 
phytoplankton species biovolumes. 
 

PCA analysis of the matrices XG, XH, XI, XJ, XK and XN. 
The sepan function of the ade4 package is designed to 
perform this task. We provide now the R code for these> 

+ "G"]])%*%Pda 
> FGes 

Tco[1:112> pta1$
This leads to the six plots
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Figure 16. Reproducibility of the compromise for each of the six stations on the 1st and 2nd axes.  
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computations and compare the results with those of the 
sepan and pta functions. 
 
> Gde <- eigen(as.matrix( 
+ ktabbiovol3mscaled[["G"]])%*% 
+ t(as.matrix(ktabbiovol3mscaled[[ 
+ "G"]]))/112) 
> Gde$values[1:10] 
> sepan(ktabbiovol3mscaled, 
+ nf=3)$Eig[1:10] 
 
> PdasepG <- Gde$vectors[,1:4] 
> DdasepG <- diag(Gde$values[1:4]) 
> GdasepG <- PdasepG%*%sqrt(DdasepG) 
> dimnames(GdasepG)[[1]] <- 
+ dimnames(pta1$li)[[1]] 
> dimnames(GdasepG)[[2]] <- 
+ c(dimnames(pta1$li)[[2]],"Axis4") 
> GdasepG 
> sepan(ktabbiovol3mscaled, 
+ nf=4)$Li[1:11,] 
> PdasepG 
> GdasepG%*%solve(sqrt(DdasepG)) 
> sepan(ktabbiovol3mscaled, 
+ nf=4)$L1[1:11,] 
 
> FessepG <- t(ktabbiovol3mscaled[[ 
+ "G"]])%*%PdasepG 
> FessepG 
> sepan(ktabbiovol3mscaled, 
+ nf=4)$Co[1:112,] 
> FessepG%*%solve(sqrt(DdasepG)) 
> sepan(ktabbiovol3mscaled, 
+ nf=4) $C1[1:112,] 
 
4.  Results 
 
The three successive steps of the partial triadic analysis 
successfully revealed the (1) proximity between stations, 
(2) pattern of phytoplankton dynamics through the 
sampling times of the one-year study, and (3) stability 
and reproducibility of this pattern for each station of the 
lake. 
 
Investigations began with the spatial homogeneity of the 
Reservoir Marne through time. A rather good 
interstructure was revealed by the partial triadic analysis: 
on the one hand, the arrows on Figure 5 head towards 
the same direction and on the other hand the cos² are 
above average values for each table (see Figure 8), which 
is tantamount to a good representation of each of the 
tables on the compromise table whose transpose is given 
in Appendix 1.  
 
This interstructure enables us to look at the compromise, 
a common temporal structure derived from each 
sampling station table (see Figure 6 and Figure 7) and 
check for its reproducibility among the 6 sampling 
stations (G, H, I, J, K and N), Error! Reference source 
not found..  

The links highlighted by the interstructure between 
stations are sensible from a biological point of view if one 
looks at the different features of the stations such as 
maximum depth, distance from the shore, stream 
velocity and so on, depicted in Section 1. As one can 
spot on the first two axes of the compromise showing the 
temporal evolution of the phytoplankton community 
(Figure 4), the phytoplankton community structure does 
not change between winter and spring. Then, after some 
time spent growing, the community structure undergoes 
some changes between late spring and summer.  
 
The projection of variables, i.e. phytoplankton species, 
on the first two axes of the compromise, shown in Figure 
7, enables us to spot associations between the species 
themselves. Additionally, the species were colored 
according to the phytoplankton family to which they 
belong, see Table 2 for the meaning of the colors, thus 
allowing the detection of a common pattern of behavior 
for a given phytoplankton family. 
 
Comparing the coordinates of the species on the first two 
axes of the compromise, Appendix 2 and Figure 7, and 
the coordinates of the sampling times, Figure 6 , 
highlights which ones of the species are specific to some 
season of the year. Such an analysis can be completed by 
looking at the values of the biovolumes per station and 
dates which can be easily plotted for any of the species. It 
can be done for all of the species and is reported for four 
of them, “Trachelomonas volvocina”, “Fragilaria ulna var 
angustissim”, “Dinobryon divergens” and “Cryptomonas 
rostratiformis”, in Figures 9-12. 
 
A more precise account on the links between the 
biovolume of the species and their factorial coordinates 
on the first three axes of the compromise was derived 
using Kendall correlation coefficients. These correlation 
coefficients were plotted in Figures 13-15 for the species 
for which the association was significant at a 1% level 
with any of the three axes. Limits of significance, at a 1% 
level, were reported on the graphics and whenever an 
association was found to be significant, at a 1% level, 
between the biovolume of one of the species and an axis, 
the name of the specie was added to the graph.  
 
Two of the four previously quoted species, “Cryptomonas 
rostratiformis” (Cryptmns.rstrtf) and “Fragilaria ulna var 
angustissim” (Frglr.ln.vr.ngs) show a significant, at a 1% 
level, association with the first axis. Additionally, the 
“Trachelomonas volvocina” shows a significant, at a 5% 
level, association with the first axis. “Dinobryon 
divergens” shows a significant, at a 1% level, association 
with the second axis. The previous correlation analysis 
can also be performed between the biovolume of the  
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Figure 17. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the G station and the phytoplankton 
species. 
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Figure 18. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the H station and the phytoplankton 
species. 
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Figure 19. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the I station and the phytoplankton 
species. 
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Figure 20. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the J station and the phytoplankton 
species. 
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Figure 21. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the K station and the phytoplankton 
species. 
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Figure 22. Significant Kendall correlations, at a 1% level, 
between the 1st axis of the N station and the phytoplankton 
species. 
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phytoplankton species and each of the station during the 
step of analysis of the reproducibility of the compromise 
among the 6 sampling stations using Figures 17-22.  Such 
an analysis helps us to spot patterns of associations 
between species, stations and dates helping freshwater 
scientists identify species that should be good markers of 
a “good ecological state”. 
 

In a word, the commonly used classification of 
phytoplankton species does not appear to be relevant to 
characterize either the season or the features of the 
stations. The use of the partial triadic analysis provides 
an alternative solution by showing significant 
associations. 
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Appendix 1. Transpose of the compromise matrix 
06/03 04/04 03/05 07/06 28/06 04/07 24/07 07/08 22/08 05/09 19/09 

Actinastrum.hantzschii -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 -0.23 -0.24 0.89 1.27 
Ankyra.lanceolata 3.44 0.46 0.48 -0.88 -0.88 -0.88 -0.88 -0.88 -0.88 0.28 0.63 
Pediastrum.cells 2.69 2.04 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 
Chlamydomonas.sp 0.68 2.06 -1.05 3.04 -1.05 0.57 -0.70 -1.08 -1.08 -0.32 -1.08 
Chlorella.vulgaris -0.48 1.34 -2.59 -1.56 -0.68 -1.00 -0.09 3.55 -0.73 1.86 0.39 
Undetermined.chlorophytes 3.45 2.49 -1.55 -1.96 -1.82 -0.98 0.29 2.50 -0.06 -0.83 -1.54 
Oval.chlorophytes -1.19 1.94 -2.72 2.37 3.04 -0.68 -0.71 -1.08 -0.86 1.02 -1.15 
Spherical.chlorophytes -1.28 -1.28 -1.28 1.52 1.21 -1.28 -1.28 -1.28 -1.28 3.61 2.65 
Coelastrum.astroideum -1.09 -1.09 -1.09 -1.09 -0.47 -0.89 -0.41 -0.50 1.55 3.80 1.29 
Coelastrum.microporum -0.95 -0.86 -0.92 -0.89 -0.95 -0.85 0.10 0.15 -0.17 5.83 -0.49 
Coelastrum.reticulum -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 0.49 -0.64 5.23 
Crucigenia.tetrapedia -1.12 -1.33 -1.34 -1.28 -1.24 -1.27 -0.64 0.84 0.61 3.43 3.34 
Crucigeniella.rectangularis -1.32 -1.17 -1.32 -1.32 -1.16 -1.30 0.54 -0.10 3.35 1.95 1.83 
Dictyosphaerium.pulchellum 0.74 0.86 -0.77 -0.77 0.32 0.67 -0.41 0.35 0.34 -0.77 -0.56 
Dydimocystis.bicellularis -1.17 2.50 -1.44 -1.41 -0.81 -1.01 -1.32 -0.95 0.15 2.19 3.27 
Dysmorphococcus.variabilis -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 5.23 0.49 
Elakatothrix.gelatinosa -1.23 1.89 1.56 0.21 -0.21 0.44 -0.94 0.60 -0.36 -1.14 -0.81 
Little.green.flagellates 2.45 4.90 -1.35 -1.05 -0.53 -0.41 -1.20 -0.21 -1.18 0.06 -1.48 
Golenkinia.radiata -1.31 -1.31 -1.31 -1.31 -1.11 -0.20 -0.70 1.47 1.53 4.37 -0.12 
Hyaloraphidium.contortum -0.05 3.78 0.24 0.97 -0.22 -0.65 -1.79 -0.66 -1.42 0.81 -1.02 
Korshikoviella.sp -0.10 -0.10 0.95 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 
Monoraphidium.kormakovae 0.01 3.61 -1.42 -0.35 -1.13 -1.44 -1.05 0.30 0.89 0.92 -0.34 
Monoraphidium.minutum -2.14 2.59 -1.97 -2.03 0.29 0.19 -0.68 0.79 1.40 1.43 0.12 
Mougeotia.gracillima -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.79 1.09 -0.84 2.07 4.21 
Oocystis.lacustris -1.70 -1.69 -1.61 1.40 -0.19 -0.98 -0.90 2.12 0.49 1.29 1.76 
Oocystis.solitaria -1.22 -1.22 -1.22 -1.22 -0.10 0.28 1.33 0.58 0.13 2.13 0.53 
Pediastrum.biradiatum -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 1.70 1.37 0.49 
Pediastrum.boryanum.var.longico -1.78 -1.61 -1.77 -0.92 0.20 -0.52 0.72 1.47 0.14 1.79 2.28 
Pediastrum.duplex.var.gracillin -1.32 -1.32 -1.32 -1.31 -0.65 -0.64 -1.30 0.06 2.90 2.80 2.10 
Pediastrum.simplex -1.67 -0.52 -1.68 -1.68 -1.45 -1.46 1.28 1.43 0.81 4.34 0.60 
Pediastrum.simplex.var.sturmii -1.30 -1.30 -1.30 -1.01 -1.29 -1.02 -0.98 0.63 4.17 1.36 2.05 
Pediastrum.tetras -0.62 -1.53 -1.60 -0.80 -0.24 -0.42 -0.66 0.90 3.80 1.06 0.13 
Phacotus.lendneri -1.90 -1.70 -1.84 -1.63 3.21 4.14 0.01 0.19 0.55 -1.06 0.04 
Scenedesmus.acutus -0.97 0.76 -0.64 -1.24 -0.98 -1.27 -0.85 2.56 0.19 0.50 1.93 
Scenedesmus.bicaudatus -0.88 -1.05 -0.94 -0.86 1.27 -0.72 -0.22 -0.22 0.69 2.09 0.84 
Scenedesmus.linearis -1.44 -1.41 -1.52 -1.47 -1.35 2.78 1.30 0.55 -0.31 2.46 0.40 
Scenedesmus.opoliensis 2.36 -1.00 -1.13 -1.06 -1.00 -0.31 -0.29 0.66 0.37 1.96 -0.55 
Scenedesmus.parisiensis -1.02 -1.02 -0.98 -1.02 -0.99 -1.02 -0.86 2.87 1.95 -1.02 3.11 
Scenedesmus.quadricauda -1.04 -1.16 -1.41 -1.19 -0.74 -1.28 -1.21 1.24 1.80 3.29 1.70 
Scenedesmus.spinosus -0.96 -1.14 -1.10 -1.05 -1.12 -1.09 -1.10 0.65 2.98 1.47 2.47 
Sphaerocystis.schroeteri -1.37 -1.16 -1.06 -0.42 -1.31 -0.96 -0.77 2.83 3.30 1.44 -0.51 
Tetraedron.caudatum -1.19 -1.19 -1.19 -0.16 -0.01 0.04 -0.36 0.15 0.96 1.41 1.54 
Tetraedron.minimum -1.23 -1.31 -1.30 -1.28 -1.26 -1.24 -0.65 -0.42 1.05 2.52 5.11 
Tetraedron.triangulare -0.77 -0.77 -0.77 0.07 -0.77 2.40 0.07 1.80 -0.77 -0.77 0.28 
Tetrastrum.staurogeniaforme 1.16 2.48 0.22 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 
Treubaria.triappendiculata -0.46 -0.09 -1.07 -0.89 -1.07 0.26 -1.07 -0.35 2.06 2.94 -0.27 
Bitrichia.chodatii -1.31 -1.49 -1.49 -1.49 0.66 2.38 0.94 -0.56 1.01 0.54 0.84 
Chrysolykos.planctonicus -0.95 -0.95 -0.95 -0.46 4.47 2.50 0.10 -0.95 -0.95 -0.95 -0.95 
Dinobryon.bavaricum -1.28 -1.26 -0.27 -1.26 2.04 3.11 3.42 -0.84 -1.24 -1.24 -1.17 
Dinobryon.divergens -1.79 -1.62 -0.12 1.01 2.19 3.57 2.44 -1.45 -1.78 -0.99 -1.46 
Dinobryon.elegantissimum -1.49 -1.47 -0.74 -1.14 4.42 0.13 3.93 -0.16 -0.87 -1.43 -1.18 
Dinobryon.sertularia 0.68 1.55 -0.81 3.15 -0.83 0.43 -0.83 -0.83 -0.83 -0.83 -0.83 
Dinobryon.sociale.var.americanu 2.05 -0.84 0.11 3.51 -0.84 -0.84 0.21 -0.84 -0.84 -0.84 -0.84 
Dinobryon.sociale.var.stipitatu -1.30 -1.19 -0.11 -0.99 0.55 0.74 2.81 -1.27 -1.21 -1.10 3.08 
Erkenia.subaquaeciliata 1.05 4.42 -2.19 -1.32 -0.32 0.11 -0.77 2.20 -0.95 -0.64 -1.58 
Kephyrion.sp -0.54 -1.22 -0.95 0.10 5.02 2.62 -0.64 -1.66 -1.29 -0.64 -0.79 
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Appendix 2. Species coordinates on the first three axes of the compromise 
CS1 CS2 CS3   CS1 CS2 CS3 

Actinastrum.hantzschii -1.3488 -0.1638 -0.8958  Ochromonas.sp 0.5744 -1.2422 -1.3352 
Ankyra.lanceolata 0.6799 -3.1994 -1.3917  Pseudopedinella.sp 2.3420 -3.2963 1.9237 
Pediastrum.cells 1.7210 -3.1014 -0.1682  Salpingoeca.frequentissima -1.0769 -1.7631 -1.7290 
Chlamydomonas.sp 2.2789 -1.3767 -1.4379  Cryptomonas.marsonii -0.2586 1.6385 2.9978 
Chlorella.vulgaris -2.6782 -1.9386 2.2460  Cryptomonas.obovata 1.9266 -3.9986 -0.6171 
Undetermined.chlorophytes 1.2762 -4.6053 3.3089  Cryptomonas.rostratiformis 4.0307 -1.9817 -1.6792 
Oval.chlorophytes 0.7633 0.2794 -1.7025  Cryptomonas.sp -5.1383 -1.1852 2.2689 
Spherical.chlorophytes -3.5667 0.4855 -4.1339  Rhodomonas.minuta -1.4077 -5.1246 0.6298 
Coelastrum.astroideum -4.5219 -0.4827 -0.5700  Rhodomonas.minuta.var.nanoplanc -1.8501 -4.3879 2.4117 
Coelastrum.microporum -4.2851 -0.9665 -0.3253  Anabaena.bergii -0.8328 1.7578 3.4732 
Coelastrum.reticulum -3.0824 0.0893 -2.1973  Anabaena.solitaria -2.7357 2.9201 -0.0966 
Crucigenia.tetrapedia -5.6385 -0.7882 -0.8735  Anabaena.spiroides -0.0827 0.9620 1.4603 
Crucigeniella.rectangularis -4.6170 -0.2535 0.9822  Aphanizomenon.flos.aquae -4.2937 -1.2173 -1.4324 
Dictyosphaerium.pulchellum 0.7570 -0.7267 0.9250  Aphanizomenon.gracile -3.9170 -0.7769 1.5732 
Dydimocystis.bicellularis -3.3370 -2.1181 -1.8148  Aphanocapsa.conferta 1.6077 -3.3291 -0.5087 
Dysmorphococcus.variabilis -3.8289 -1.0249 -1.6833  Aphanocapsa.holsatica 2.2670 -2.1479 -0.5345 
Elakatothrix.gelatinosa 1.6627 0.1565 0.5641  Chroococcus.limneticus -3.4998 -0.6814 2.0138 
Little.green.flagellates 2.3873 -4.6834 0.3322  Undetermined.spherical.cyanobacteria -3.5028 -2.2170 0.2695 
Golenkinia.radiata -4.7603 -0.6061 1.2524  Microcystis.aeruginosa -2.7138 -0.7281 1.7385 
Hyaloraphidium.contortum 1.6863 -2.4066 -1.3186  Microcystis.weissenbergii -4.7401 -0.4904 -1.2801 
Korshikoviella.sp 0.2816 0.1600 -0.1110  Oscillatoria.sp -1.7668 -0.3694 2.8353 
Monoraphidium.kormakovae -0.4942 -3.3456 0.7637  Planktothrix.agardhii -4.5516 -0.3748 -3.1313 
Monoraphidium.minutum -2.1976 -0.7848 1.6877  Planktothrix.rubescens -1.5819 -2.0039 -0.8615 
Mougeotia.gracillima -4.5035 -0.4395 -1.6214  Pseudanabaena.acicularis -4.1059 -0.4058 -2.8885 
Oocystis.lacustris -3.4075 0.7328 -0.1347  Pseudanabaena.galeata -4.1019 0.0014 -2.8950 
Oocystis.solitaria -2.7997 1.0246 0.7537  Pseudanabaena.limnetica -3.3859 0.0810 -1.2607 
Pediastrum.biradiatum -2.0526 -0.4241 0.0452  Woronichinia.naegeliana -4.7507 0.3277 -0.8901 
Pediastrum.boryanum.var.longico -4.0659 1.2017 0.2938  Closterium.acutum.var.variabile -5.8198 -1.2237 -1.7545 
Pediastrum.duplex.var.gracillin -5.1105 -0.4543 0.0012  Cosmarium.sp -4.1097 0.6225 -1.4393 
Pediastrum.simplex -5.0262 -0.7297 1.4724  Spondylosium.clypsedra -3.6256 0.1456 3.3373 
Pediastrum.simplex.var.sturmii -4.7762 -0.5337 1.2137  Staurastrum.sp -3.8907 -0.8983 0.0389 
Pediastrum.tetras -3.2649 -0.1630 1.9812  Asterionella.formosa 2.4743 -1.5287 -3.0705 
Phacotus.lendneri -0.4203 4.2227 1.0282  Aulacoseira.granulata.var.angus -4.5287 -0.9708 -0.5957 
Scenedesmus.acutus -2.5901 -1.2113 1.1151  Cyclotella.bodanica 3.2234 -2.0073 -0.4283 
Scenedesmus.bicaudatus -2.6751 0.5162 -0.5198  Cyclotella.cyclopuncta 1.4606 -5.0615 2.1292 
Scenedesmus.linearis -2.8809 1.5439 0.9743  Cyclotella.sp -2.4601 -3.4938 -0.8661 
Scenedesmus.opoliensis -1.4343 -2.2835 0.6622  Diatoma.tenuis 0.6928 -3.5553 -1.0415 
Scenedesmus.parisiensis -3.3948 -0.1426 1.6278  Fragilaria.crotonensis 2.8722 -1.5168 -0.4610 
Scenedesmus.quadricauda -5.0648 -1.0031 0.3205  Fragilaria.ulna.var.acus 1.6100 -3.8643 0.2784 
Scenedesmus.spinosus -4.5085 -0.7394 0.4613  Fragilaria.ulna.var.angustissim 3.6104 -5.7770 0.1412 
Sphaerocystis.schroeteri -3.4899 -0.4876 3.1532  Fragilaria.virescens -2.1572 0.2473 -1.3691 
Tetraedron.caudatum -2.8969 0.6740 -0.3869  Navicula.sp..grande. 2.9476 -4.9755 -1.0642 
Tetraedron.minimum -5.8823 -0.4875 -2.0465  Nitzschia.acicularis 0.2077 -3.1873 0.4495 
Tetraedron.triangulare -0.1914 1.4120 1.1185  Nitzschia.fruticosa -1.4056 0.2755 -0.2285 
Tetrastrum.staurogeniaforme 1.5688 -2.2103 -0.0728  Nitzschia.sp -3.1708 -2.3708 -0.6505 
Treubaria.triappendiculata -2.9033 -1.2208 0.4465  Ceratium.hirundinella -3.7908 1.1676 0.6651 
Bitrichia.chodatii -1.9352 2.3099 0.5682  Gymnodinium.lantzschii 0.6250 -3.3045 0.8018 
Chrysolykos.planctonicus 1.5618 3.5808 -0.5917  Gymnodinium.sp -0.5162 -2.6478 1.4679 
Dinobryon.bavaricum 1.6503 4.3326 1.1287  Peridiniopsis.Elpatiewskii -1.2995 1.8610 5.0755 
Dinobryon.divergens 2.2249 5.0219 -0.4422  Peridinium.inconspicuum -2.2539 1.1369 -2.1221 
Dinobryon.elegantissimum 1.2820 4.4612 1.3891  Peridinium.willei -4.6275 0.0964 0.1515 
Dinobryon.sertularia 2.2824 -1.0338 -1.3758  Euglena.sp -4.6530 -0.5840 0.3981 
Dinobryon.sociale.var.americanu 2.1917 -0.7654 -1.6008  Phacus.acuminatus -3.2359 -2.3656 -0.0081 
Dinobryon.sociale.var.stipitatu -0.8873 2.9036 -1.1843  Trachelomonas.sp -4.8274 -0.5552 0.9606 
Erkenia.subaquaeciliata 1.6624 -3.3661 2.4325  Trachelomonas.volvocina -6.0895 -2.1411 -1.6180 
Kephyrion.sp 1.7442 3.5304 -1.8306  Tribonema.angustissimum 2.9341 -4.9751 -0.5835  
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