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This paper deals with modeling and forecasting coke petroleum calcination (CPC) prices. We first consider 
some empirical techniques (polynomial regression, Holt and Winters smoothing) and compare them with the 
more general Box and Jenkins method. We also use nonparametric predictors. The case study is accessible to 
readers with an intermediate level of statistics. Prior exposure to Box-Jenkins techniques is useful but not strict-
ly necessary. 
 

 
 
1.  Introduction

The origin of the current study was a request concerning 
a privatization project of a company, requiring its valua-
tion. Current market conditions for CPC are involved in 
the future turnover of this project. CPC (Coke Petroleum 
Calcination) is derived from a by-product of oil and is 
used in aluminum and titanium alloys. In this paper, we 
study the structure and prediction of CPC prices (in dol-
lars) from quarterly data (denoted from Q1 to Q4) be-
tween 1985-Q1 and 2008-Q4 (figure 1). Due to the ir-
regular variability of these data, the problem is somewhat 
intricate. 
 
In a first report, an expert used simple linear regression 
and obtained not very plausible results. The goal of this 
paper is to compare linear regression (LR) with more effi-
cient methods: parabolic regression (PR), Holt and Win-
ters filtering (HW), the Box and Jenkins method (BJ) and 
finally, nonparametric prediction (NP). For this purpose, 
we have used the software R  developed by the R Devel-
opment Core Team (2008). 

 
Figure 1: CPC prices from 1985-Q1 to 2008-Q4 
 
It is noteworthy that LR, PR and HW may be considered 
as special cases of BJ (see Section 2). Thus, not surpris-
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ingly, BJ appears as more efficient than the former tech-
niques. 
 
The non-homogeneity of the data led us to divide them 
into three parts: 1985-Q1 to 1995-Q4 where a seasonal 
component appears, 1996-Q1 to 2007-Q4 where the 
trend is parabolic and 2008 data that can be considered 
as outliers (possibly due to the economic crisis). In this 
paper, our aim is to construct forecasts, especially for 
2009, not taking into account the 2008 exotic data (since 
they are not representative of typical conditions upon 
which to build an evaluation of the company). 
 
The next section deals with polynomial regression and 
HW. We specify the link of these methods with BJ and 
explain why LR and PR are not suitable for CPC study. 
The third part is devoted to BJ. We obtain two different 
models: one for 1985-Q1 to 1995-Q4, another one for 
1996-Q1 to 2007-Q4. Finally, the NP method is consid-
ered in Section 4. 
 
2.   Empirical Methods 
 
The linear regression (LR) model has the form: 

0 1 ,  t tX a a t tε= + + ∈ Ζ

( )
 

where tX is the observed process, 0α  and 1α are real 
coefficients and ( )tε  is a white noise: 

2 2 0, 0,

( ) 0 ; , ,
t t

s t

E E

E s t s

ε σ ε

ε ε

= > =

= ∈Ζ ≠ .t
 

We first show that, in some sense, the LR model is a spe-
cial ARIMA (Auto Regressive Integrated Moving Aver-
age) process (ARIMA theory appears in Brockwell and 
Davis (1991) among other references). Set 

1 1,t t tY X X a t−= − − ∈Ζ    (1) 
then 

1,t t tY ε ε −= − ∈Ζt    (2) 
and is a MA(1), hence (( )tY )tX  is a non-centered ARI-
MA(0,1,1). 
 
In addition, despite the fact that the polynomial of degree 
one which appears in (2) has a unit root, ( )tε is the inno-
vation process of ( . In order to prove that assertion, 
we first note that (2) implies 
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where  stands for convergence in mean square. 
Consequently, 

⎯→⎯
2L

t tMε ∈ , the closed linear space generated 
by ,sY s t≤ . Noting that tε  is orthogonal to 1tM − , we 
conclude that ( )tε is the innovation of (  and that )tY

1tε −−  is the orthogonal projection of  on tY 1tM − , that is 
the best linear predictor of  given  tY , 1t≤ − .sY s

Now the LR is not convenient for data with irregular var-
iations like CPC since it only computes a trend, assuming 
that this trend is linear, and does not take into account 
the correlation between the ’s. This limitation appears 

in Figure 2 and 3 where the “explained variances” 
tX

2R are 
respectively 7% and 28% ! 

The parabolic regression (PR) model is written as 
2

0 1 2 ,t tX a a t a t tε .= + + + ∈Ζ   (4) 
In order to give an ARIMA interpretation of PR, we dif-
ferentiate to obtain 

1 2 1(2 1)t t t tX X a t a 1ε ε− −− = − + + −  
a second differentiation leads to the relation 

1 2 2 12 2 2t t t t t tX X X a ε ε ε 2 .− − −− + = + − + −

2

 
If we put 

1 22 2t t t tY X X X a− −= − + −  
it follows that (  is a MA(2) and ()tY )tX  becomes a non-
centered ARIMA(0,2,2). 
 
Again the polynomial associated with has a (double) 
unit root and ( )

( )tY  

tε  is the innovation of . In order to 
prove that claim, we set 

,E tε ε

( )tY

1t t t−= − ∈Ζ  
then we have 

Y E 1t t tE −= −  

and, using a similar method as above, we obtain the rela-
tion t tE M∈ and 
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Letting tending to infinity gives tk t Mε ∈ and 1t tMε −⊥ , 
the proof is therefore complete. 
 
PR suffers for the same limitation as LR but fits CCP 
prices from 1996 to 2007 better with a 2R of 93% (Figure 
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3). Note however that the 2R is not a completely satis-
factory criterion of efficiency, we refer to Mélard (1990) 
for a comprehensive discussio
 
The Holt and Winters method is more sophisticated 
ecause it also takes into accoun

n. 

b t a possible seasonality of 
the data. For an additive seasonal model with period 
length p and if ˆ ( )TX H denotes the prediction of T HX +  
given the data 1, ... TX X , one has the additive Holt-
Winters orecast :

1 ( 1) mod
ˆ ( )T T T H pX H a S + + −= +  

where  Ta , Tb  and 

 f    

 are recursively given by  
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( 1 )T T T TS = γ X  - a ) + (  - p

and where the smoothing parameters

- Sγ

α ,β andγ are tak-
en in [0,1]. Their optimal values are dete

 
prev us techniques are associated 

dels. Then it is natural to use 

,2) 
(1,0,1)  : the seasonality period is one year (four quarters) 

casts  (at confidence 
level 0.95) are presented in Figure 4. Recall that our main 

rmined by mi-
nimizing the squared one-step prediction error. The func-
tions a , b and S are initialized by performing a simple 
decomposition in trend and seasonal component and us-
ing moving averages on the first periods. This method is 
optimal for a SARIMA(0,2,2)(0,1,1)P  model (here the 
triplet (0,2,2) refers to the AR, differencing and MA or-
ders for the series, the triplet (0,1,1) to the same orders 
for the seasonal components and P to the length of the 
seasonal period, see, for example, Bosq and Lecoutre, 
1992). The results obtained by this method are quite sat-
isfactory for both periods (see Figure 2 and 3).  
 
3.   The BJ Method 

We have seen that the 
with various SARIMA mo

io

and the prediction intervals

the BJ method for modeling and forecasting our data.  
 

For the period 1985-1995 we obtain a SARIMA (2,0
4

and there is no trend (see Figure 2). However, the fore-
casts for 1997 and 1998 are not completely satisfactory, 
indicating a probable change of model. For 1996-2007 
the new model is ARIMA (2,2,1) (see Figure 3). Thus, 
the seasonality has disappeared and the trend is parabolic 
(I=2).  

 
The fore

interest is to predict 2009 postulating a return to a qui-
eter situation. Results obtained by LR are not included in 
these prediction intervals but PR appears as an upper 
limit of them. In addition, we note that the model re-
mains the same by considering only the data from 1996- 

Figure 2: CPC predictions built with data of 1985-Q1 to 
1995-Q4 

 and crosses: observed CPC prices (1985-I to 1995-IV) 
rcles: observed CPC prices (1996-Q1 to 1997-Q4) 

R and LR from 1996-Q1 to 

Legend: 
Black line
Black ci
Red: modelized values by BJ  
Blue: modelized values by HW 

 Green: modelized values by PR
Cyan: modelized values by LR 
Dotted: predictions by BJ, HW, P
1997-Q4 

 
Figure 3: CPC predictions built with data of 1996-Q1 to 
2007-Q4 

 and crosses: observed CPC prices (1996-Q1 to 2007-
Legend: 

Black line
Q4) 
Black circles: observed CPC prices (2008-Q1 to 2008-Q2) 
Red (resp. blue, green and cyan): modelized values by BJ (resp by 
HW, by PR and LR) 
Dotted: predictions by BJ, HW, PR and LR for 2008-Q1 and 
2008-Q2 
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Figure 4: Prediction intervals for CPC by BJ method 

sses: 2008-Q1 and 2008-Q2 observed CPC prices 

 
for 2008-Q1 to 2009-Q4 
y BJ for 2008-Q1 to 2009-Q4 

 
 to sharp forecasts of the observed 

etric Method 

derlying model is of 

Legend: 
Black line: observed CPC prices (1996-Q1 to 2007-Q4) 
Black cro
In red: modelized values by BJ  
In green: modelized values by PR 
In cyan: modelized values by LR
Dotted: predictions by PR and LR 
Yellow zone : prediction interval b
at confidence level 0.95 

Q
y

1 to 2006-Q4 leading
ear 2007. On the contrary, if one adds the two first data 

points of 2008, the model becomes an ARIMA (1,2,0) 
but with a lesser fit. 
 
4.   The Nonparam
 
The BJ method postulates that the un
SARIMA type. That assumption being somewhat arbi-
trary it is often convenient to employ a nonparametric 
method (avoiding the estimation of a possibly important 
number of parameters). This method is, in some sense, 
“objective” since the underlying model only appears 
through regularity conditions.  
 
fI Y is a stationary and Markovian process observed at 

where is a nonparametric estimator of the regres-

instants 1,..., n , the nonparametric predictor of 

n HY + (where 1H ≥  represents the horizon) takes the form: 
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Prediction res lts for stochastic processes by kernel ap-
pear in Bosq and Blanke (2007).  

ruc nonparametric 
redictors on the twice differentia  from 1996-Q1 

 the LR, PR and HW methods are all 
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Based on the BJ model, we const t the 

ted datap
to 2007-Q4 which can be considered as a stationary 
process. The results are detailed in Annex A5.  
 
5.   Conclusion 
 
We have seen that
ssociated with SARIMA models. Since the BJ method a

selects the best SARIMA model, it is natural to consider 
the BJ forecasts as “optimal”. Finally, it is interesting to 
note that the nonparametric predictions are close to the 
BJ ones.  
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App
 

1. Linear regression 

duals for both periods under 

A
 

irst, let us examine the resiF
consideration: 

 
Figure A1: Residuals of the linear regression calculated 
from 1985-Q1 to 1995-Q4 (left) and from 1996-Q1 to 2007-
Q4 (right). 

e tail values indicating that residuals have heavy tails. 

ificant at level 
=0.05. For 1996-Q1 to 2007-Q4, the regression line is: 

 

 Qtr1 Qtr2 Qtr3 Qtr4 

 
The residual plots are quite unsatisfactory and present a 
trend. The normal QQ-plots present also irregularities in 

th
The obtained coefficients of determination R2 are respec-
tively about 0.07 and 0.28 (highlighting the lack of ade-
quacy of the linear regression model).   
 
Concerning the first period, we obtain that the regression 
coefficients are not statistically sign
α

-8288.2947+ 4.2403 t  

where t represents the considered year (for example t = 
1996.25 for 1996-Q2). The forecasts for 2008-2009 are: 

Table A1.  Forecasts by Linear Regression Calculated 
from 1996-Q1 to 2007-Q4 

2008 226.3054 227.3655 228.4256 229.4857 
2009 230.5457 231.6058 232.6659 233.7260 

 
For the period 1985-1 . 1 , t
s pre rro an  d  
etween observed and fitted values) is large: 912.27 (resp. 

oncerning the first period, the same diagnostics can be 
esiduals; the multiple coeffi-

ient of regression R   is still poor (of order 0.2). For 

995 (resp 996-2007) he mean-
quare diction e r (the me  of square ifferences

b
547.94). 
 
A2. Parabolic regression 
 
C
performed on the obtained r

2c
1996-Q1 to 2007-Q4, residuals are more satisfactory and, 
now, the R2  is of order 0.93. 

 
Figure A2: Residuals of the parabolic regression calculated 
from 1985-Q1 to 1995-Q4 (left) and from 1996-Q1 to 2007-
Q4 (right). 

http://www.r-project.org/
http://www.r-project.org/
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8334942 – 8331.2 t + 2.081908 t2 

-2009 are: 
 

07-Q4 
 Qtr1 Qtr2 Qtr3 Qtr4 

In the last case, the obtained parabolic regression equa-
tion is: 

where t still represents the considered year. The forecasts 
for 2008

Table A2.  Forecasts by parabolic regression calculated 
from 1996-Q1 to 20

2008 279.4374 287.0035 294.8298 302.9163 
2009 311.2631 319.8701 328.7373 337.8648 

 
Finally, concerning th  1  th
s pre rro to ile 
007, it is equal to 49.7 (which is an acceptable value 

or 1985-Q1 to 1995-Q4, the Holt-Winters additive 

he adjusted smoothing values are α=1, β=0 and γ=1. 

is model is 228.28 
(better than for
 

olic one with a 
ean-square prediction error of order 32.72 (instead of 

Forecasts fo e following 
table. 
 

Q1 to 2007-Q4 
 Qtr1 Qtr2 Qtr3 Qtr4 

e period 985-1995, e mean-
quare diction e r is equal 787.8 wh for 1996-

2
compared to those obtained below for HW and BJ meth-
ods). 
 
A3. Holt-Winters method 
 
F
model is without trend but with a seasonal component. 
T
Starting values for the intercept a and the seasonal com-
ponents s1, s2, s3, s4 are: a=175.53125,  

s1=0.28125, s2=-0.59375, 
s3=-1.65625 and s4=1.96875. 

The mean-square prediction error for th
 polynomial regression).  

Concerning the period 1996-2007, the Holt-Winters ad-
justment performs better than the parab
m
49.7). In this case, the adjusted model has a trend and 
smoothing coefficients are α=0.7158514, β=0.3077308 
and γ=1. Starting values for a, b and s1, s2, s3, s4 now are: 

a=260.3981317, b=3.8470212, 
s1=4.4370174, s2=1.0006902, 

s3=-3.9535466 and s4=-0.3981317. 
r 2008 and 2009 are given in th

Table A3.  Forecasts by Holt-Winters calculated from 
1996-

2008 268.6822 269.0929 275.8927 275.3881 
2009 284.0703  284.4809 291.2808 290.7762 

 
A x-J et
 

or 1985 to 1995, the adjusted model by the BJ method is 
ith non-zero mean (using the 

 package “forecast”, Hyndman, 2009). The computed 

995-Q4. 
ar1 ar2 ma1 ma2 

4. Bo enkins m hod 

F
a SARIMA(2,0,2)(1,0,1)4 w
R
coefficients and their empirical standard deviation are 
given in Table A4. 

 
Table A4:  Coefficients and their standard deviations for 
the period 1985-Q1/1
 
Coefficient 0.6947 0.0314 0.3201 0.9776 
SD 0.1574 0.1818 0.111 0.5624 

in t   sar1 sma1 tercep
Coefficient -0.3237 0.7673 1  41.9635 
SD 0.3396 0.214 16.0001  
 
As expected an pr rr r is about 

.68, better r th ious  models.  The 
uality of the fit is measured through the following diag-

en in Table 
5. The mean-square prediction error is now about 23.97 

 ar1 ar2 ma1 

, the me square ediction e o
104  than fo e prev ly tested
q
nostics which show that the error term of the model can 
be considered as white noise (see Figure A3). 
 
Concerning the period 1996-Q1/2007-Q4, one obtains a 
ARIMA(2,2,1) with estimated coefficients giv
A
(instead of 32.72 for the Holt-Winters method).  
 
Table A5.  Coefficients and their standard deviations for 
the period 1996-Q1/2007-Q4 

Coefficient -0.1371 0.4539 -0.8841 
SD 0.1847 0.1777 0.1057 

 

Figure A3: BJ residuals. Period 1985-Q1/1995-Q4 
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Figure A4:  BJ residuals. Period 1996-Q1/2007-Q4 
 
Again, the error term of the model can be considered as 
white noise (see Figure A4). Finally we give in Table A6, 
the prediction interval at confidence level 80% (resp. 
95%):  

[Lo 80 , Hi 80] (resp. [Lo 95 , Hi 95]) 
while “Forecast” corresponds to the fitted value. 
 
 
Table A6.  Forecasts and their prediction intervals for 2008-
2009 
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 
2008:      
  Q1 265.8799 259.4706 272.2891 256.0778 275.6820 
  Q2 267.5490 258.5805 276.5175 253.8328 281.2651 
  Q3 272.4645 259.0733 285.8558 251.9844 292.9447 
  Q4 275.0236 258.2369 291.8102 249.3506 300.6965 
2009:      
  Q1 279.3794 258.4455 300.3133 247.3637 311.3950 
  Q2 282.4191 257.7748 307.0634 244.7289 320.1093 
  Q3 286.4549 257.7276 315.1821 242.5203 330.3894 
  Q4 289.7567 257.1195 322.3938 239.8425 339.6708 

 
A5. Nonparametric kernel prediction 
 
Coming back to CPC prices, we begin by interpreting the 
BJ results of Annex A4. Since 2=I  for 1996-Q1/2007-
Q4, we construct our nonparametric predictor on the 
twice differentiated data which can be considered as 
stationary: 

)( tY

1 22t t t tY X X X− −= − +  
where t is varying from 1996-Q3 to 1997-Q4 (so that 
n=46). Moreover, using Table A4 and inverting the 

process, we find that the best linear predictor of 1nY + given 
,tY t n≤  is  

1 2 30.74 0.2 0.17 0.15n n n nY Y Y Y− − −− + − +  

Noting the important role played by , it is convenient 
to use the couples ( , for computing the NW pre-
dictor. This allows us to avoid the well-known nonpara-
metric curse of dimensionality. Values obtained for 

 and are given in Table A7. 

Predictors of  and  can 
be computed from the equations: 

nY

3Q

)i i HY Y +

3Q− 20Ŷ

1 2008
ˆ ˆ

Q QX X− −

2008 1, 2008 2,
ˆ ˆ

Q QY Y− − Y2008
ˆ

2008

08 4Q−

2, , 2008X̂ − 2008 4
ˆ

QX −

2008 1 2008 1 2007 4 2007 3

2008 2 2008 2 2008 1 2007 4

2008 3 2008 3 2008 2 2008 1

2008 4 2008 4 2008 3 2008 2

ˆ ˆ 2

ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ2 .

Q Q Q

Q Q Q

Q Q Q

Q Q Q

X Y X X

X Y X X

X Y X X

X Y X X

− − − −

− − − −

− − − −

− − − −

= − +

= − +

= − +

= − +

Q

Q

Q

Q

 

We compute the Nadaraya-Watson estimator by choos-
ing a standard normal kernel. Finally, the bandwidth  
is empirically adjusted by minimizing the prediction error 
for the observed year 2007. This method leads to fore-
casts that are slightly lower than values obtained by the 
BJ method (see Table A5) but still within the prediction 
intervals. 

nh

 
Table A7.  Forecasts for 2008  by NW predictor 

 2008-Q1 2008-Q2 2008-Q3 2008-Q4    

Ŷ  4.424399 -3.337333 3.203995 -1.960531 

X̂  264.3613 265.3628 269.6254 271.6383 
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