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In the planning and design of new clinical trials, calculation of the required sample size and power is a critical part of the 
process. Power calculations are usually based on quantities estimated from analysis of historical data and are therefore 
subject to uncertainty. In many cases this is addressed by sensitivity analysis, but simple sensitivity analysis gives an 
incomplete picture of the uncertainty involved in estimates of power. Here we describe an analysis of historical clinical 
trial data using the Bayesian Bootstrap, which gives - by generation of the predictive power distribution - a fully 
probabilistic description of the uncertainty in a power calculation.  

 
 
 
1. Introduction 
 
The ICH E9 Guideline on Statistical Principles for 
Clinical Trials (ICH; 1998) states that “the number of 
subjects in a clinical trial should always be large enough to 
provide a reliable answer to the questions addressed”. By 
convention, in most pivotal clinical trials, a sample size is 
chosen which gives at least 80% power, and to derive this, 
relevant historical data are generally analyzed – for 
example to give estimates of mean levels of response on 
test and control treatment arms, and to give estimates of 
variability.  
 
There are, however, problems associated with 
conventional power calculations. The most obvious of 
these problems is that a single estimate of power, based 
on historical data, is inevitably subject to uncertainty. In 
many cases there will be relatively little historical data, 
and hence estimates taken from such data are only 
approximations at best. Regulatory guidelines recognise 
this uncertainty and indicate that it should be 
appropriately addressed. The ICH E9 Guideline, for 
example, states that: “it is important to investigate the 
sensitivity of the sample size estimate to a variety of deviations 
from these assumptions. ” (ICH; 1998). 
 

 
 
In this report we illustrate the use of the Bayesian 
Bootstrap, in an analysis of historical data, to provide a 
predictive distribution for the power of a planned future 
clinical trial. The predictive power distribution gives a 
complete description of what it is reasonable to believe 
about the power of the planned trial, and is preferable 
both to a single power estimate and to a simple sensitivity 
analysis. We compare the predictive power distribution 
derived from the Bayesian Bootstrap with one obtained 
using a more conventional Bayesian analysis implemented 
in BUGS (Spiegelhalter et. al., 2005). 
 
2. Predictive Power Distributions 
 
Spiegelhalter et. al. (2004, see Section 6.5.5.) give a 
simple explanation and example of the concept of a 
predictive power distribution. If the uncertainty about the 
quantities entering a conventional power calculation (for 
example mean values and standard deviation) is 
expressed in the form of prior distributions, then the 
predictive power can be considered simply as the 
distribution that is directly induced or implied by these 
priors: a function of the conditional power and the priors. 
Spiegelhalter et.al. give an example of how this can be 



- 19 -  The Bayesian Bootstrap In A Predictive Power Analysis / Huson 
 
derived by Monte Carlo simulation in a simplified case. 
This basic idea can be extended to include both prior 
belief about the uncertain quantities, and also 
information obtained from historical data, and then it 
becomes a fully Bayesian procedure. The predictive power 
distribution provides a complete summary of what a 
Bayesian would regard as being reasonable to believe 
about the study power. Rubin & Stern (1998) provide a 
more detailed theoretical discussion of the use and 
interpretation of predictive power distributions. 
 
3. The Bootstrap and the Bayesian Bootstrap 
 
Let X1 , X2 , . . . Xn be a sample of independent, 
identically distributed random variables having an 
arbitrary and unknown distribution. Typically we wish to 
calculate an estimate of some parameter of this 
distribution – for example, the mean value. The bootstrap 
forms an empirical estimate of the sampling distribution 
of the parameter of interest by drawing n items from the 
sample data, at random and with replacement, and 
computing a point estimate from this sample. This 
process is repeated many times and the resulting 
collection of estimates constitutes an empirical summary 
of the sampling distribution. It should be noted that there 
are some important differences between this technique 
and the related concept of permutation testing. Efron & 
Tibshirani (1993; see Section 16.3) specifically discuss 
this relationship and the differences between the two 
techniques.  In the simple bootstrap process, it can be 
seen that in each random sample from the {Xi}, each 
individual value is drawn with a frequency of between 0 
and n times. These frequencies can be regarded as 
weights in the estimation of, for example, a mean value. 
The simplest description of the Bayesian Bootstrap is that 
the integer weights implicit in the conventional bootstrap 
are replaced by specially-chosen non-integer weights. To 
form these non-integer weights the following process is 
described by Rubin (1981): 
 
1. Generate n-1 independent identically distributed 
random variables from the uniform distribution on the 
interval 0,1.  
 
2. Order these random variables and denote the ordered 
sequence as U1 … Un-1 . Form the sequence of differences:  
 

Δ1 =  U1 – 0, 
Δ2 =  U2 – U1, 
Δ3 =  U3 – U2, 
…. 
Δn =  1 – Un-1. 

 
Then, proceed as in the conventional bootstrap, but 
sample values from the data {Xi} using the {Δi} as 

weights i.e. data value X1 is assigned weight Δ1, which is 
equivalent to selecting value X1 with probability Δ1. 
Using this weighted sample, calculate the estimate of 
interest – e.g. the mean value.  
 
3. As with the conventional bootstrap, repeat this process 
many times to form an empirical distribution of the 
estimate of interest. 
 
Rubin (1981) proved that this algorithm yields an 
approximation to the posterior distribution of the 
parameter of interest, which can be interpreted according 
to Bayesian principles. The prior that is implied in this 
process is essentially a non-informative prior for the 
probabilities of the {Xi}, under the approximating 
assumption that the {Xi} have a discrete distribution  
 
The theory underlying this prior is discussed in more 
detail, together with some alternatives, by Shao & Tu 
(1995), who also provide a full and detailed description of 
the algorithm and some of the theory underlying it. Lo 
(1987) reports on a detailed simulation study of the 
procedure, and Banks (1988) reports a further simulation 
study of both the Bayesian Bootstrap and some smoothed 
variants.  
 
Since its introduction, the Bayesian Bootstrap has been 
little used in practice, despite being computationally more 
straightforward to implement than many other Bayesian 
techniques. The main advantage is that it is very easy to 
compute, using conventional software and programming 
languages. This means that it can readily be used in 
practice to form Bayesian posterior distributions without 
recourse to specialist Bayesian software such as BUGS, 
and it is therefore very convenient for common analyses 
such as power calculations.  
 
4. The Data 
 
The historical data we analyse come from a small pilot 
clinical trial in which a response (a summary of symptom 
severity scores) was measured on two groups of patients: 
one group treated with a new test treatment intended to 
reduce symptom severity, and the second receiving a 
conventional established treatment. The hope is that the 
new treatment will result in lower mean symptom severity 
scores than the established treatment, and a second and 
larger clinical trial was planned in order to further 
investigate this hypothesis. The objective of the analysis 
reported here was to provide Bayesian estimates of the 
power of this new clinical trial.  
 
For reasons of confidentiality the details of the data and 
experimental treatment cannot be provided, and the data 
we utilise in this report have been simulated to have 



- 20 -  The Bayesian Bootstrap In A Predictive Power Analysis / Huson 
 
characteristics which closely match those of the original 
pilot clinical trial. Using this (simulated) historical data, 
we derive Bayesian estimates of the power of planned 
second clinical trial, in which the same two treatments 
will be compared using a larger sample of patients.  
 
In the pilot clinical trial, 37 patients received the 
conventional treatment, and the mean symptom severity 
score was 128.1 (standard deviation=52.3). The test 
treatment arm consisted of 42 patients and the mean 
score was 112.8 with standard deviation = 41.7. A 
conventional power calculation (carried out using the 
package nQuery), using these mean values and assuming 
a common standard deviation of 47 units, indicates that 
the planned clinical study will require 150 patients per 
treatment arm to give 80% power to detect a statistically 
significant difference between the two treatment arms 
(using a two-sided alpha level of 0.05). But there is 
uncertainty about this estimate of power – it is based on 
the mean values and standard deviations seen in a 
relatively small sample of historical data, and clearly there 
is uncertainty about the true values of these means and 
standard deviations. The Bayesian Bootstrap can be used 
to summarize the consequences of this uncertainty by 
forming the predictive power distribution for the new 
clinical trial. 
 
5. Predictive Power: Bayesian Bootstrap  
 
To implement the Bayesian Bootstrap in a predictive 
power analysis, we apply the above algorithm to the 
historical data, to draw estimates of (a) the mean 
response on the test treatment (b) the mean response on 
the control treatment and (c) an estimate of the standard 
deviation, (calculated, for consistency with the original 
conventional power calculation reported above, by 
averaging the estimates for the two treatment arms). We 
then use these quantities in a conventional power 
calculation, with a fixed size of 150 patients per 
treatment arm, to derive an estimate of the study power. 
We repeat this process 5000 times in order to derive the 
empirical estimate of the predictive power distribution. 
This process is easily programmed, and we derived this 
estimate using the SAS® System. The SAS code for this 
case study is available from the author.  
 
The numbers of replications required in a bootstrap 
application is always best judged in the context of a 
particular case by studying the behaviour of the estimated 
parameter as the number of replications increases. Efron 
& Tibshirani (1993; see Section 6.4) discuss this and 
conclude that, sometimes at least, even small numbers of 
replications can give good estimates. In the context of a 
Bayesian application, Huson & Kinnersley (2008) 

reported that their bootstrapped estimates converged 
satisfactorily after approximately 500 replications. 
 
6. Predictive Power: BUGS 
 
For the purposes of comparison, we also derived a 
predictive power distribution using the Bayesian 
modelling language BUGS (Spiegelhalter et. al., 2005). 
This process involves specifying a Bayesian model for the 
historical data, including prior distributions for the means 
and common standard deviation, and then using BUGS 
to estimate the posterior distributions for the two means 
and the standard deviation. Again, values from these 
posterior distributions are used in conventional power 
calculations to yield an empirical estimate of the 
predictive power distribution. We implemented this 
process using BUGS and the BRugs package, which 
allows BUGS code to be run via the R system. BUGS and 
R code for this case study is available from the author. 
 
7. Results 
 
The Bayesian process, instead of producing a single point 
estimate of power for the new clinical trial, yields a 
predictive (or posterior) distribution which summarizes 
the uncertainty about the power of planned new trial, 
and shows plausible values for this power. The predictive 
power distribution derived using the Bayesian Bootstrap is 
summarised in Figure 1 – plotted as an empirical 
cumulative distribution function based on generation of 
5000 samples. 
 
The median of this predictive power distribution is 82%, 
which is close to the point estimate of power provided by 
the simple nQuery calculation. 
 
The predictive power distribution generated using the 
BUGS package is shown as Figure 2. The median of this 
distribution is 81%. 
 

 
Figure 1. Bayesian Bootstrap Predictive Power [as CDF] 
[n=150] 
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Figure 2. BUGS Predictive Power [as CDF] [n=150] 
 
The similarity between the predictive distributions 
generated by the Bayesian Bootstrap and by BUGS is 
illustrated in Figure 3, which overlays the plots of the two 
simulated predictive distributions as empirical cumulative 
distribution functions. The two predictive distributions 
are clearly very similar. 
 

 
Figure 3. Overlay of Plots of Predictive Power Distributions 
[n=150] 
 
An alternative presentation is in the form of empirical 
density functions, and this representation is shown in 
Figure 4; again the estimates from BUGS and from 
Bayesian Bootstrapping appear very similar. This 
representation is the one illustrated by Spiegelhalter et. al. 
(2004, see Section 6.5.5.), and the forms of the density 
functions in their example and in the present one are 
similar and typical of predictive power distributions. 
 

 
Figure 4. Predictive Power Distribution Plotted as PDFs. 

8. Interpretation of the Predictive Distribution 
 
The real value of the predictive power distribution is that 
it gives a comprehensive illustration of what it is 
reasonable to believe about the power of the planned 
future study. A single point estimate of study power may 
be very misleading, since it does not reflect the 
uncertainty that exists about the quantities that are used 
to calculate the power. Even a sensitivity analysis, in 
which a number of different values of the unknown 
quantities are used, gives an unsatisfactory summary, as 
this type of analysis does not indicate the probabilities of 
the different values - it usually simply illustrates that 
there is some uncertainty about the power estimate. The 
Bayesian predictive power distribution, on the other hand, 
completely summarizes what is known about the power, 
based on the historical data that are available.  
 
As a single summary of the Bayesian estimate of study 
power, the median of the predictive power distribution is 
typically used – this gives a reasonable single estimate 
from what is often a skewed distribution. Alternatively, 
the predictive distribution can be used to determine a 
range of plausible power values and the probability 
attached to them. For example, in the results shown here, 
the Bayesian Bootstrap predictive power curve shows that 
there is 50% probability that the power of the planned 
study will be 82% or more. Sometimes, in undertaking 
predictive power analysis, we pre-specify a desirable 
probability of exceeding a conventional power of, say, 
80%, and adjust the sample size until the predictive 
power curve suggests that we have achieved the desired 
probability for this power.  Rubin & Stern (1998) provide 
a more detailed discussion of the use of predictive power 
distributions, and examples of applications in practice are 
provided by Hutton & Owens (1983) and Schmidli et. al. 
(2007). 
 
9. Discussion 
 
The use of Bayesian predictive power analysis is 
sometimes regarded as a curious mixture of Bayesian and 
Frequentist philosophies. The “uncertain quantity” which 
is being estimated is the study power, and the power of a 
study is a firmly frequentist concept. The Bayesian 
analysis tells us, in effect, what degree-of-belief to attach 
to any particular range of estimated power values.  
 
Predictive power analysis appears still to be little used in 
practice, and one of the reasons for this may be that a 
conventional Bayesian analysis must either use analytical 
techniques, which in most cases, for reasons of 
tractability, severely restricts the distributional 
assumptions which can be made, or must make use of 
specialist Bayesian software such as the BUGS package. 
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The main advantage of the Bayesian Bootstrap technique 
is that it is computationally simple to implement and can 
easily be programmed in most packages and with most 
programming languages. This makes it an attractive 
option for commonly performed calculations such as 
power analyses. 
 
The results reported here show that, for this example at 
least, the predictive power distribution from the Bayesian 
Bootstrap is very similar to that produced from a more 
conventional Bayesian analysis using BUGS. 
 
Predictive power analysis is not the only Bayesian 
approach to determination of sample size and power. A 
convenient summary of some of the alternative Bayesian 
methods is given by Chow et. al. (2008). More detailed 
descriptions of other methods – some quite different from 
the one presented here - are also given by Pezeshk (2003), 
and Grouin et. al. (2007). 
 
After its introduction by Rubin (1981) few applications of 
the Bayesian Bootstrap were published in the literature, 
though in recent years more have started to appear.  Kim 
& Lee (2003) use the Bayesian Bootstrap to analyse 
proportional hazards models while Aldridge & Bowman 
(2005) discuss its use in the context of developmental 
toxicity studies. Douady et. al. (2003) utilise the Bayesian 
bootstrap in a genetic application, Price et. al. (2005) in 
the study of protein sequences, and a recent application 
in the context of estimation of an ROC curve has been 
provided by Gu et. al. (2008).  Clearly the technique is 
becoming more popular, but, as Shao & Tu (1995) 
comment, the study of applications of the Bayesian 
bootstrap is still at an early stage. 
 
REFERENCES 
 
Aldridge G. and Bowman D. 2005. Bayesian bootstrap 

methods for developmental toxicity studies. Journal of 
Statistical Computation and Simulation, 75(2):1 – 91. 

Banks D.L. 1988. Histospline smoothing the Bayesian 
Bootstrap. Biometrika, 75(4): 673-684. 

Chow S.C., J. Shao and H. Wang. 2008. Sample Size 
Calculations in Clinical Research (see Chapter 13). 
Chapman & Hall/CRC. 

Douady C.J., F. Delsuc, Y. Boucher, W.F. Doolittle and 
E.J.P. Douzery. 2003. Comparison of Bayesian and 
Maximum Likelihood Bootstrap Measures of 
Phylogenetic Reliability. Mol. Biol. Evol., 20(2):248–254. 

Efron B. And R.J. Tibshirani. 1993. An Introduction To The 
Bootstrap. Chapman & Hall Monographs on Statistics 
and Applied Probability. New York. 

Grouin J.M., M. Coste, P. Bunouf and B. Lecoutre. 2007. 
Bayesian sample size determination in non-sequential 
clinical trials: Statistical aspects and some regulatory 
considerations. Statistics in Medicine, 26:4914–4924. 

Gu J., S. Ghosal S. and A. Roy. 2008. Bayesian bootstrap 
estimation of ROC curve. Statistics in Medicine, 
published online DOI: 10.1002/sim.3366. 

Huson L.W. and N. Kinnersley. 2008. Bayesian Fitting of a 
Logistic Dose-Response Curve with Numerically-
Derived Priors. Pharmaceutical Statistics (in press). 

Hutton J.L. and R.G. Owens. 1983. Bayesian sample size 
calculations and prior beliefs about child abuse. The 
Statistician, 42: 399-404. 

ICH. 1998. International Conference on Harmonization: 
Harmonised Tripartite Guideline E9: Statistical 
Principles For Clinical Trials. 

Lo A.Y. 1987. A Large Sample Study of the Bayesian 
Bootstrap. Annals of Statistics, 15(1): 360-375. 

Pezeshk H. 2003. Bayesian techniques for sample size 
determination in clinical trials: a short review. Statistical 
Methods in Medical Research, 12: 489-504. 

Price G.A.,G.E. Crooks, R.E Green and S.E.  Brenner. 2005. 
Statistical evaluation of pairwise protein sequence 
comparison with the Bayesian bootstrap. Bioinformatics, 
21 (20): 3824–3831. 

Rubin D.B. 1981. The Bayesian Bootstrap. Annals of 
Statistics, 9(1): 130-134. 

Rubin D.B., H.S. Stern. 1998. Sample size determination 
using posterior predictive distributions. Sankhya : The 
Indian Journal of Statistics: Special Issue on Bayesian 
Analysis, Vol spl, Series , Pt. 1: 161-175. 

Schmidli H., F. Bretz and A. Racine-Poon. 2007.  Bayesian 
predictive power for interim adaptation in seamless 
phase II/III trials where the endpoint is survival up to 
some specified timepoint. Statistics in  Medicine, 
26:4925–4938. 

Shoa J. And T. Dongsheng. 1995. The Jackknife and 
Bootstrap. Springer Series in Statistics. Springer-Verlag, 
New York. 

Spiegelhalter D., K.R. Abrams and J.P. Myles. 2004. 
Bayesian Approaches to Clinical Trials and Health-Care 
Evaluation (see Section 6.5.5). Wiley, Chichester. 

Spiegelhalter D., A. Thomas, N. Best and D. Lunn. 2005. 
WinBUGS user manual, version 1.4’, MRC 
BiostatisticsUnit, Institute of Public Health and 
Department of Epidemiology & Public Health, Imperial 
College School of Medicine. Downloadable from 
http://www.mrc-bsu.-cam.ac.uk/bugs. 

 

Correspondence: l.huson@imperial.ac.uk  

http://www.mrc-bsu.-cam.ac.uk/bugs
mailto:l.huson@imperial.ac.uk

