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The development of air quality control strategies is a wide preoccupation for human health. In order to achieve this 
purpose, air pollution sources have to be accurately identified and quantified. This case study is part of a scientific 
project initiated by the French ministry of Ecology and Sustainable Development. Measurements of chemical 
composition data for particles have been performed at a French urban site. The work presented in this paper splits into 
two main steps. In the first one, the identification of the source profiles is achieved by a Principal Component based 
Factor Analysis (FA), followed by a rotation technique. Then, in the second step, a receptor modeling approach (using 
Positive Matrix Factorization as an estimation method) allows us to evaluate the apportionment of particles by source. 
The results from these two statistical methods have enabled us to characterize and apportion fine particulate matter 
emissions by five sources. The exposition is accessible to readers with an intermediate knowledge of statistics; an 
exposure to factor and principal components analyses is useful but not strictly necessary. 

. 
 
 
1.  Introduction 
 

 

Air pollution is a complex mixture of extremely small 
particles and liquid droplets suspended in the air we 
breathe. Various sources such as factory and utility 
smokestacks, vehicle exhausts, wood burning, mining, 
construction activity and agriculture are known to 
generate particle pollution, also called particulate matter 
(PM). High concentrations of particles have been found 
to present a serious danger to human health (Pope et al., 
2002; Samet et al., 2000). 

In this study, particles of special preoccupation to the 
protection of lung health are those known as fine 
particles, less than 2.5 microns in diameter and called 
PM2.5 in the rest of this paper. Thus, a wide 
preoccupation of environmental protection agencies 
concerns the development of PM2.5 control strategies. 
One of the main goals of these strategies is to improve 
ambient air quality. In consequence, this involves the 
reduction of emissions from primary sources. Therefore it 
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is important to be able to identify these air pollution 
sources and evaluate the contributions of these sources. 
 
A reliable way of providing information regarding source 
characteristics is often obtained from a receptor modeling 
approach, using measurements of chemical composition 
data for particles at a sample site; see Hopke (1991) for 
some details and useful references. Most of the 
multivariate receptor models are based on an analysis of 
the correlations between measured concentrations of 
chemical species, assuming that highly correlated 
compounds come from the same source. Factor Analysis 
(FA) is commonly used as a multivariate receptor model, 
and this multivariate method has been successfully 
applied to identifying sources in several studies. However, 
FA fails to quantify contributions from different sources. 
Specific methods are then needed to address this 
problem. One of them is Positive Matrix Factorization 
(PMF); see for instance Paatero and Tapper (1994).  
 
The case study presented here corresponds to the 
statistical part of the scientific program PRIMEQUAL 
(Projet de Recherche Interorganisme pour une MEilleure 
QUalité de l'Air à l'échelle Locale), initiated by the 
French ministry of Ecology and Sustainable Development 
and the ADEME (Agence de l'Environnement et de la 
Maîtrise de l'Energie, that is French Environment and 
Energy Management Agency), about atmospheric 
pollution and its impacts. In this statistical work, a 
methodology for determining particulate emission sources 
and their concentrations at the urban site of Anglet 
located in the South-West of France was proposed and 
applied. This paper is based on a more extensive article 
(Chavent et al. 2007). 
 
The following three-step process was implemented: 
 
(i) Air pollution data (that is, PM2.5) were 
collected with sequential fine particle samplers on the 
receptor site and the chemical composition of each 
sample was measured with PIXE (Particle Induced X-ray 
Emission) method. A data matrix of chemical 
compounds concentrations in each sample was obtained 
after several pre-treatments. 
 
(ii) To identify possible air pollution sources, we 
implemented a FA approach to this data matrix and we 
rotated the standardized factors in order to obtain more 
interpretable results.  
 
(iii) For the sources apportionment issue, we 
applied PMF to the same data matrix and normalized the 
results so as to find components with physical 
interpretations (concentration of each source in each 
sample).  

It is interesting to note that steps (ii) and (iii) are 
numerically and computationally independent. Because 
the PMF method can be used for both identifying and 
quantifying the pollution sources, case studies usually 
don’t mix FA and PMF. But in practice, it can be difficult 
when using PMF to identify potential sources without 
some sort of profile to which to compare the final results. 
In this case study, we mix FA and PMF in the sense that 
we check that each source quantified with PMF is clearly 
correlated with a single source identified with FA. 
Sources which are difficult to identify with PMF are then 
clearly identified with the help of FA and the identity of 
other sources is validated with FA.  
 
The rest of this case study is organized as follows. A 
description of the air pollution data set is given in Section 
2. The sources identification step via FA and Varimax 
rotation is developed in Section 3. Section 4 is devoted to 
the sources apportionment step via PMF. Finally, Section 
5 gives conclusions and summarizes the paper.  
 
2.  The data set 
 
PM2.5 samplers were collected by AIRAQ 1  during 
December 2005 and July 2006 at the French site of 
Anglet located in the South-West of France (see Figure 
1). In this case study, we only exhibit the results 
corresponding to the winter data set. 
 
This sampling site located at “Station fixe d’Anglet” (see 
the map given in Figure 1) was chosen because of its 
proximity with: 
- a high traffic road in red on the map, 
- three cities (Bayonne, Anglet, Biarritz) with a 
total of 170,000 inhabitants, 
- an industrial area with a steelworks and a 
refinery in the North-East, the Atlantic Ocean in the 
West. 
 
This receptor site is thus subject to different pollution 
origins: traffic road, urban and industrial activities, and 
natural dust. The knowledge of potential origins was 
decisive in the choice of the site.  Indeed, it allowed 
checking if the sources identified with the statistical 
methodology (without using any information about the 
sources) were coherent with the expected ones. The n = 
61 samples of PM2.5 were collected every twelve hours: 
one for the day (7AM:7PM) and one for the night 
(7PM:7AM).  
 
The mass, volume and concentration C in ng/m3 
(nanograms per cubic meter) of each particle sampler  

 
1 Réseau de surveillance de la qualité de l’air en Aquitaine 
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Figure 1 : The French urban site 
 
CENBG 2 , as well as the concentrations in p = 15 
chemical elements (Al, Si, P, S , Cl, K, Ca, Ti, Mn, Fe, Ni, 
Cu, Zn, Br, Pb)3. Table 1 gives a subset of the data in 
their initial form. We notice on this data table that the 
concentrations of the 15 elements measured with PIXE 
are very small compared to the total concentrations C in 
the samples. Obviously the 15 concentrations measured 
with PIXE do not add up to the total concentration of the 
samples. The lements (H, C, N, O)4 not measured with 
PIXE represent almost all the remaining concentration.  
 
Elements Ni and Ti that were frequently present at 
concentrations below the detection limits (BDL) were 
excluded and only 13 elements were selected. The few 
BDL data remaining in this data set were then replaced 
with values corresponding to one-half the appropriate 
analytical detection limit. In nature, the elements Al, Si, 
S and Fe are usually found in the following oxidized 
forms: Al2O3, Si02, S04, Fe203. For this chemical reason, 
Al, Si, S and Fe were replaced by the compounds Al2O3, 
Si02, S04, Fe203: we added the mass of the measured 
element to the mass of oxygen of its oxidized form. Then, 
the remaining concentration, called Corg, which was not 
measured by the previous compounds and elements was 
calculated for each particle sampler: 
Corg = C (Al2O3 + Si02 + P + S04 + Cl + K + Ca + Mn 
+ Fe203 + Cu + Zn + Br + Pb). 
                                                 
2 Atelier Régional de Caractérisation par Analyse Nucléaire 
Elémentaire – Centre d’Etudes Nucléaires de Bordeaux Gradignan 
3 Aluminum (Al), Silicon (Si), Phosphorus (P), Sulphur (S), 
Chlorine (Cl), Potassium (K), Calcium (Ca), Titanium (Ti) 
Manganese (Mn), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), 
Bromine (Br), Lead (Pb).  
4 Hydrogen (H), Carbon (C), Nitrogen (N), Oxygen (O). 

The addition of the column Corg in the data matrix is a 
key point specific to this case study. We indeed noticed 
during the data pre-treatment that the remaining 
concentrations not measured by PIXE could be an 
important part of the samples concentrations. We can see 
on Figure 2 that the proportion of Corg in samples which 
have a concentration greater than 5 μg/m3 is at least 50% 
of the total concentration. Corg will then be used to 
distinguish among the sources identified, those mostly 
participating to the concentration in PM2.5. The other 
15 columns will be used to identify the sources. For 
instance, it is known that the elements Zn and Pb can be 
found among in particulates emitted by industrial sources.   
 

Table 1: Subset of the original data table 
Date C Al Si … K Ca … Br Pb 
23-11-05 day 
23-11-05 night 
24-11-05 day 
24-11-05 night 
  #  
24-12-05 day 
24-12-05 night 
25-12-05 day 
25-12-05 night 

7264.2 
9633.0 
10952.4 
5333.3 
  # 
20978.3 
18130.8 
23297.9 
36105.3 

92 
135 
175 
36 
  # 
<2 
18 
37 
<2 

75 
90 
137 
31 
  # 
<1 
<1 
22 
<1 

… 
… 
… 
… 
  # 
… 
… 
… 
… 

163 
211 
241 
94 
  # 
266 
307 
311 
277 

35 
23 
69 
44 
  # 
<1 
<1 
12 
<1 

… 
… 
… 
… 
  # 
… 
… 
… 
… 

7 
7 
8 
9 
  # 
7 
7 
7 
10 

10 
77 
19 
7 
  # 
18 
19 
14 
19 

 
Table 2 displays the data set after having applied the 
transformations described above. The (n,p) concentration 
matrix X = xij( ) used in the receptor model then has n 

= 61 rows and p = 14 columns (Al2O3, Si02, P, S04, Cl, K, 
Ca, Mn, Fe203, Cu, Zn, Br, Pb, Corg). The coefficient xij  is 
the concentration of the jth chemical compound in the 
ith sample.  
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Figure 2: The proportion of Corg in the sample according to 
the total concentration C of the sample 

 
Table 2: The final data set 
Date C Al2O3 Si02 … K Ca … Br Pb Corg 
23-11-05 day 
23-11-05 night 
24-11-05 day 
24-11-05 night 
  #  
24-12-05 day 
24-12-05 night 
25-12-05 day 
25-12-05 night 

7264.2 
9633.0 
10952.4 
5333.3 
  # 
20978.3 
18130.8 
23297.9 
36105.3 

250 
365 
475 
96 
  # 
3 
49 
101 
3 

160 
193 
292 
66 
  # 
1 
1 
46 
1 

… 
… 
… 
… 
  # 
… 
… 
… 
… 

163 
211 
241 
94 
  # 
266 
307 
311 
277 

35 
23 
69 
44 
  # 
0.5 
0.5 
12 
0.5 

… 
… 
… 
… 
  # 
… 
… 
… 
… 

7 
7 
8 
9 
  # 
7 
7 
7 
10 

10 
77 
19 
7 

  # 
18 
19 
14 
19 

4645.3 
6564.2 
7017.1 
2805.5 

  # 
16240.7 
15878.3 
20636.8 
30885.1 
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A meteorological data set was also used to interpret and 
validate some results. Hourly temperatures and wind 
directions (in degrees) were collected during the sampling 
period at a meteorological station located 2.5 km away 
from the sampling site. Temperatures were averaged to 
match with the 12-hours samples. The 360-degree range 
of wind directions was split into 8 categorical wind 
directions (North, North-East, North-West, South….) 
and a wind direction data matrix of 61 rows (12-hours 
samples) and 8 columns (wind directions) were 
constructed. An element of this matrix is the percentage 
of hours during which the wind direction has been 
observed (Table 3).  

where F is the (n,q) matrix of unobserved values of the 
factors, whereas the (p,q) matrix A is the unknown 
loading matrix which provides information that relates 
the factors   f1,…, fq  to the original variables   x1,…, x p . 
Several approaches exist to estimate the model (principal 
components, maximum likelihood …) but the Principal 
Components approach to factor extraction is often used 
in practice. With this estimation method, the q columns 
of F are close to the first q standardized principal 
components (which are mutually orthogonal and of 
variance equal to 1) and each element a  of A is equal 

to the correlation between the variable  and the factor 
jk

jx
fk .  

Table 3: Wind direction data 
Date N N-E E S-E S S-W W N-W 
23-11-05 day 
23-11-05 night 
24-11-05 day 
24-11-05 night 
  # 

17% 
25% 
0% 
0% 
  # 

0% 
17% 
0% 
0% 
  # 

25% 
33% 
8% 
0% 
  # 

8% 
25% 
17% 
0% 
  # 

8% 
0% 
50% 
8% 
  # 

0% 
0% 
25% 
9% 
  # 

0% 
0% 
0% 
58% 
  # 

42% 
0% 
0% 
25% 
  # 

 
In this case study, we applied our PC-based FA to the 
concentration matrix X where the 61 samples (in rows) 
are described by 14 compounds (in columns). We see in 
Figure 3 that each kth column of F and kth row of A’ 
obtained with FA will be associated to a source. The 
approach is the following: we search in the kth row of the 
loading matrix A’ for compounds which are strongly 
correlated with the kth factor.  If these compounds are 
known to be characteristic of a source, this source is 
associated to this factor. Because the n samples are 
chronologically ordered, the kth column of the factor 
score matrix F gives an idea of the evolution of the 
quantity of fine particulates emitted by the source 
associated with the kth factor.  

 
3. Factor Analysis and Varimax rotation for 

sources identification 
 
In order to identify the sources of fine particulate 
emissions, we applied FA to the concentration matrix X. 
The idea was to find groups of correlated chemical 
compounds that are characteristics of air pollution 
sources. For instance, if the elements Zn and Pb are 
strongly correlated to the same factor, since these 
elements are known to have industrial origin, this factor 
will be associated to industrial pollution source. 

 
Of course, depending on the correlations in the loading 
matrix, it is not always possible to clearly associate a 
source to a factor. In this study, after several trials, we 
chose q=5. Indeed, it was not possible to clearly associate 
a source to each factor with decompositions into more 
than 5 factors. Moreover, with q=5, 90.93% of the total 
variance is explained by the factors.  

 
In FA, we consider an (n,p) numerical data matrix X 
where n objects are described on p < n  variables 

  x1,…, x p . We note x j  a column of X. Let 

be the standardized data matrix with ˜ X = ˜ x ij( )n

˜ x ij =

,p
xij − x j

s j
 where x j  and  are the sample mean 

and the sample standard deviation of

s j

x j

˜ 

. The basic idea 
underlying Factor Analysis (using correlation matrix) is 
that the p observed standardized variables  x 1,…, ˜ x p , can 
be expressed, except for an error term, as linear functions 
of q < p  unobserved variables or common factors 

  f1,…, fq . Given the observed standardized matrix ˜ X , a 
Factor Analysis model can be expressed in its simplified 
form as: 

 
Table 4 gives the loading matrix A’ obtained with the 
following procedure FACTOR of SAS:  
PROC FACTOR data=hiverorg method=prin 
nfactors=5 outstat=load; 
var Al2O3 SiO2 P SO4 Cl K Ca Mn Fe2O3 Cu Zn 
Br Pb Corg; 
run; 

where: 
– data=hiverorg is the SAS dataset constructed from 

the concentration data matrix (Table 2) 
– method=prin because the factor extraction method 

is Principal Components 
 – outstat=load is the sas dataset with the loadings 

reported in Table 4 ˜ X = FA'+E , 
 



- 123 - Apportionment of Air Pollution / Chavent, Guégan, Kuentz, Patouille & Saracco 
 
 

Figure 3:  Decomposition of the standardized concentration matrix 
 
 
Since most compounds are positively correlated with the 
first factor, it is difficult to detect groups of correlated 
elements. However the graphical representation of these 
compounds according to their correlations with f1 and f2 
(see Figure 4) or according to their correlations with f2 
and f3 (see Figure 5) shows groups of compounds that 
seem to be correlated with each other (Zn and Pb for 
instance or P, Al2O3 and SiO2). Because it is known that 
Zn and Pb for instance come from fine particulates of 
industrial origin, we would like to see clear correlations 
between those two elements and a factor. 
 
 
Table 4: Correlations between the chemical compounds 
and the 5 factors 

 f1 f2 f3 f4 f5 
Al2O3 0.672 -0.663 0.221 -0.193 0.023 
SiO2 0.649 -0.669 0.254 -0.203 -0.058 
P 0.682 -0.629 0.223 -0.238 0.006 
SO4 0.589 0.449 -0.413 -0.220 0.175 
Cl -0.474 -0.281 0.192 0.681 0.344 
K 0.888 -0.154 -0.209 0.004 0.284 
Ca 0.638 -0.405 0.099 0.399 -0.195 
Mn 0.384 0.776 0.183 0.093 -0.247 
Fe2O3 0.793 0.319 0.038 0.269 -0.360 
Cu 0.796 0.248 -0.098 0.232 -0.360 
Zn 0.352 0.663 0.589 -0.072 0.246 
Br 0.746 -0.182 -0.126 0.352 0.363 
Pb 0.428 0.659 0.519 -0.088 0.296 
Corg 0.600 0.297 -0.613 -0.025 0.222 

 
Figure 4: Factor 1-2 correlation circle 

 

 
Figure 5: Factor 2-3 correlation circle 
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In order to identify more clearly groups of correlated 
compounds, a Varimax rotation was applied to the 
standardized factors. The idea of rotation in Factor 
Analysis is the following. Let T be an orthogonal 
transformation matrix, so that TT '= T 'T = Iq , where 

qI is the q-dimensional identity matrix.  The factor 

analysis model can then be expressed as: 
 

  
˜ X = FT

˜ F 
N T ' A'

˜ A 
N + E  

where: 
• ˜ F = FT  is the matrix of rotated factors, which 

remain mutually orthogonal and with variance equal 
to 1, 

• ˜ A = AT  is the matrix of rotated loadings which are 
correlations between the variables and the rotated 
factors.  

 
From a practical point of view, the orthogonal 
transformation matrix T is defined in order to construct a 
matrix ˜ A  such that each variable x j  is clearly correlated 

to one of the rotated factors ˜ f k  (that is  close to 1) 

and not to the other rotated factors (that is 

˜ a jk
*

~
jk

a close to 

0 for ). The most popular rotation technique is 
Varimax. It seeks rotated loadings that maximize the 
variance of the squared loadings in each column of 

kk ≠*

˜ A . 
 
The matrix ˜ A  of the loadings after rotation and the 
matrix ˜ F  of the rotated factor scores are obtained with 
the procedure FACTOR of SAS:  
PROC FACTOR data=hiverorg method=prin 
nfactors=5 outstat=load out=fact 
rotate=varimax; 
var Al2O3 SiO2 P SO4 Cl K Ca Mn Fe2O3 Cu Zn 
Br Pb Corg; 
run; 

where: 
• outstat=load is the sas dataset containing the rotated 

loading  
• out=fact is the sas dataset containing the rotated 

factor scores 
 
The loadings after rotation are reported in Table 5. These 
new loadings are correlations between the rotated factors 
and the compounds. We notice now that the five rotated 
factors , …,  are clearly correlated  with some 
compounds (highlighted in grey in the table). Because 
some of these compounds are known to be characteristic 
from specific pollution sources, we it is now possible to 
associate five sources to the 5 rotated factors:  is 
clearly correlated with Cl, which is known to have sea 

salt origin. In the same way, the elements Zn and Pb 
correlated with  have industrial origin and the 
compounds Al2O3 and Si02 correlated with  are coming 
from soil dust. Factors  ,  and  can then be clearly 
associated to those three sources (see Table 6).  

˜ f 1 ˜ f 5

˜ f 5

˜ f 3
˜ f 3

˜ f 4

˜ f 1

 ˜ f 2

˜ f 3 ˜ f 5

3

 
Table 5: Correlations between the chemical compounds 
and the 5 rotated factors

 ˜ f 1  ˜ f   ˜ f 5  

Al2O3 0.981 0.087 -0.042 0.070 -0.038 
SiO2 0.979 0.012 -0.055 0.104 -0.074 
P 0.972 0.090 -0.017 0.071 -0.092 
SO4 -0.028 0.765 0.247 0.180 -0.345 
Cl -0.153 -0.274 -0.136 -0.181 0.879 
K 0.597 0.716 0.111 0.233 0.031 
Ca 0.608 0.091 -0.113 0.560 0.272 
Mn -0.279 0.119 0.604 0.582 -0.238 
Fe2O3 0.198 0.282 0.289 0.848 -0.112 
Cu 0.213 0.359 0.161 0.816 -0.149 
Zn -0.029 0.053 0.977 0.129 -0.044 
Br 0.490 0.615 0.097 0.281 0.392 
Pb 0.004 0.163 0.969 0.126 -0.054 
Corg -0.018 0.893 0.021 0.222 -0.160 

 
Table 6: Factor-source associations 
Rotated 
factor Source Characteristic correlated elements 

or compounds  
˜ f 1 Soil dust Al2O3, Si02 

˜ f 2
˜ 

 Combustion S04 

f 3
˜ 

 Industry Zn, Pb 

f 4
˜ 

 Vehicle Fe203, Cu 

f 5  Sea Cl 

 
In the same way, S04 correlated with  is usually linked 
to combustion and Fe203 and Cu correlated with 4  can 
be linked with road traffic. In order to confirm these two 
last associations, we confronted the rotated factors 

˜ f 2
˜ f 

˜ f k  
with external information such as meteorological data 
(temperatures and wind directions) and the periodicity 
night/day of the sampling. The coefficients ĩ

 f k  of the 
column for each factor represent here a “relative” 
contribution of source k to sample i. 
 
Figure 6 gives the evolution of the relative contribution of 
the source associated with 4 . The night samples are 
distinguished from the day ones, which enables us to 
notice that the contribution of this source is stronger 
during the day than at night. This confirms that this 
source corresponds to vehicle pollution. 

˜ f 
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Figure 6: Evolution of the rotated factor 4 associated to car 
pollution 
 
Figure 7 displays the evolution of the relative 
contribution of the source associated with . We notice 
an increase in the contribution of this source at the 
middle of the sampling period, which corresponds to a 
decrease in the temperature measured on the sampling 
site, see  Figure 8. 

˜ f 2

 
Finally, correlations between the rotated factor scores 
and the eight vectors of wind directions (see Table 3 ) 
were calculated. Figure 9 (resp Figure 10 ) is a graphical 
representation of the correlations between  (resp ) 
and the wind directions. 

˜ f 3 ˜ f 5

 

-2

-1

0

1

2

3

4

23
/11

/05

25
/11

/05

27
/11

/05

29
/11

/05

01
/12

/05

03
/12

/05

05
/12

/05

07
/12

/05

09
/12

/05

11
/12

/05

13
/12

/05

15
/12

/05

17
/12

/05

19
/12

/05

21
/12

/05

23
/12

/05

25
/12

/05

Day
Night

 
Figure7: Evolution of the rotated factor 2 associated to 
heating source 
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Figure 8: Evolution of temperatures 
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Figure 9: Correlations between rotated factor 5 associated to 
the sea source and the 8 wind directions 
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Figure 10: Correlations between rotated factor 3 associated 
to the industrial source and the 8 wind direction 
 
The correlation of  with the East and North-East wind 
directions confirms that this source corresponds to 
industrial pollution. Indeed, the main industries are 
located North of the sampling site (see Figure 1). In the 
same way, the correlation of  with the West and 
North-West wind directions is a confirmation that this 
source corresponds to the Atlantic Ocean located West 
of the sampling site, and therefore to sea pollution.  

˜ f 3

˜ f 5

 
4.  Sources apportionment via PMF 
 
We have seen how fine particulate pollution sources can 
be identified by applying a FA to a concentration data 
matrix. But the identification is not sufficient. The 
danger for health is linked to the quantity of PM2.5 we 
breathe. The problem is then not only to identify the 
PM2.5 sources but also to determine in which proportion 
these sources contribute to global dust contamination. In 
order to quantify unknown sources of fine particulate 
emissions, we approximated a receptor model by first 
defining a Positive Matrix Factorization of the 
concentration matrix X, and then by normalizing the 
results to find components with physical interpretations. 
 
The basic problem of receptor modeling is to estimate, 
from the data matrix X and the number q of sources, their 
compositions and their contributions.  To address this 
problem, we consider the mass balance equation: 

∑
=

=
q

k
jkikij bgx

1
   

where 
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In this case study, 5 sources were clearly identified with 
the FA. We then chose to approximate the matrices G 
and B for q = 5 in the receptor model. Two steps (PMF 
and normalization) were necessary to approximate G and 
B. Once these approximations G  and ˆ B̂ are calculated, 
the user has an approximation of the quantities of fine 
particulates emitted by the 5 sources in each sample. The 
user also has an approximation of the profiles of the 
sources. But no name is associated to each source. A 
supplementary step is thus necessary to clearly identify 
the sources quantified in G .  ˆ

ijx is the concentration of the jth chemical species in the 

ith sample, 

ikg is the concentration in particles from source k in the 
sample i, and 

jkb is the mass fraction (percentage) of species j in source 

k. 
 
In the common parlance of receptor modeling, the b ’s 
are the sources compositions (or sources profiles) and 
the ’s are the sources contributions. The product 

 is then an approximation to the concentration in 

sample i in particles from the jth species coming from 
source k. Let be the mass, in sample i, of species j 

from source k, and let m

jk

ikg

jkbikg

ijkm
ik  be the mass in sample i from 

source k. Then 
ik

ijk

m
m

jkb  is a mass fraction or, in other 

words, it is the percentage of species j emitted by source k 
when sample i was collected. Since the mass fraction  

is assumed to be independent of i, it means that the 
sources profiles are assumed to be constant during the 
sampling period. 

 
PMF step. The matrix X is factorized into a product HC' 
of rank q under constraints of positivity of the 
coefficients. This condition is required by the physical 
reality of non-negativity of source compositions and 
contributions:  and . 0≥ikg 0≥jkb
 =

jkb

The PMF algorithm developed by Paatero and Tapper 
(1994) in the context of receptor modeling minimizes 

∑∑
∑

= =

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−n

i

p

j ij

jk

q

k
ikij chx

1

2

1

1

σ
 

 
In matrix form, the mass balance equation can be written:  subject to  and . The coefficient 0≥ikh 0≥jkc ijσ  is a 

measure of uncertainty of the observation . In this case 

study, we are dealing with variables measured on very 
different scales, which can cause problems when 
approximating X globally on all the variables (for  

ijx
 

'GBX =  
 
where G is a (n,q) matrix of sources contributions and B 
is a (p,q) matrix of sources compositions (see Figure 11).  
  

Figure 11: Decomposition of the concentration matrix 
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instance, minimizing an un-weighed quadratic error, 
corresponding to ,1=ijσ  will give better approximations 

for columns of X corresponding to variables with large 
dispersion). Hence we have opted for jij s=σ , the 

sample standard deviation of the jth variable. 
 
The numerical results were obtained with the PMF 
algorithm and program proposed by Jianhang et Laosheng 
(2004). This program takes as input: 
– the concentration matrix 1461×X ,  
– the matrix of the uncertainty measures 

1461)( ×= jij sσ   

– the number of sources q=5  
 

It gives in its output a matrix  and a matrix , 
solutions of the above constrained minimization problem. 
Obviously, this solution is not unique and other physical 
constraints were used to calculate from these two 

matrices  and  the approximations  and 

561
ˆ

×H 514
ˆ

×C

Ĝ561
ˆ

×H 514
ˆ

×C
B̂ of the contribution matrix and of the profile matrix. 
This is the scaling step. Let  be the product 
calculated by PMF. 

'ˆˆCˆ HX =

 
Scaling step. The columns of the approximations Ĥ  and 

 obtained in the previous step must be scaled in order 

to obtain the approximations G  and 

Ĉ
ˆ B̂ . The scaling 

coefficients are defined to fulfill other physical constraints 
of the sources compositions and contributions. 
 

Let us first note that ∑∑
==

==
q

k
jk

k

k
ik

q

k
jkikij chchx

11

ˆˆˆˆˆ
β
β

. 

The matrix X̂  can then be written: 'ˆ CHX
��

=  with 

 and kikik hh βˆ=
�

k

jk
jk

c
c

β
ˆ

=�
. The objective of scaling is 

then to define the scaling constants q,…kk ,1  , =β  

such that H
�

 and C
�

 satisfy the physical conditions of the 
matrices G and B imposed by the mass balance equation.  
In this study, we consider the two following conditions: 
 
(a) The concentrations of the sources add up to the total 
concentration of the samples; that is for each sample, 

 where ∑
=

=
q

k
iki g

1

γ iγ  is the total concentration in the 

ith sample. 
 

(b) If the concentrations of the observed species add up 
to the total concentration of the samples, then the sum of 
all species in each source profile is equal to unity, that is:  
 

bjk =1
j=1

p

∑   if  . xij = γ i
j=1

p

∑
 
Note that the introduction in this case study of the 15th 
column Corg (the concentration in the samples not 
measured by PIXE) calculated for each particle sampler 

yields . xij = γ i
j=1

p

∑
 
From the physical constraint (b), the scaling coefficients 

kβ  can be directly calculated: from ' , we get 

. Details can be found in Chavent et al. 

(2007).  

ˆˆˆ CHX =

∑
=

=
p

j
jkc

1

ˆkβ̂

 
In practice, we imported into Excel the numerical values 

of the matrices  and  obtained in the output 
of the PMF program and calculated: 

561
ˆ

×H 514
ˆ

×C

 
– the 5 scaling coefficients (given Table 7) by summing 

the 5 columns of the matrix 514
ˆ

×C , 

– the (14,5) matrix B̂  of the approximated 
compositions (profiles) of the 5 sources on the 14 

compounds, by dividing the five columns of 514
ˆ

×C  by the 
corresponding scaling coefficient, 
– the (61,5) matrix Ĝ  of the approximated 
concentrations of the 5 sources in the 61 samples, by 

multiplying the five columns of 561
ˆ

×H  by the 
corresponding scaling coefficient. 
–  

Table 7: The scaling coefficients 
k kβ̂  

1 147.1 
2 91.5 
3 73.5 
4 251.9 
5 51.1 

 
Quality of the model approximation. We can evaluate 
the quality of the approximation of X  by : Figure 12 
shows a good fitting of the 

'ˆˆBG
iγ 's by the iγ̂ 's with 
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 . ∑
=

=
q

k
iki g

1

ˆγ̂

 

 
Figure 12: Adjustment of γ  by ˆ γ  
 
Source identification. In practice, the knowledge of G  

and 

ˆ

B̂  gives no direct indications on the nature of the 
sources. To try to discover the nature of the five sources, 
we want to calculate their relative contribution to each of 
the 14 chemical compounds. To do that, we need to work 
with the masses instead of the concentrations. We then 
calculate from G  the approximation to the total mass of 
particulate emitted from source k in the 61 samples. This 

mass is multiplied by  and gives the percentages 

reported in 

ˆ

jkb̂
Table 8.  

 
Table 8: Relative contributions of the sources to the 
chemical compounds 

 k =1 k = 2 k = 3 k = 4  k = 5 
Al2O3 100.0 0.0 0.0 0.0 0.0 
Si02 100.0 0.0 0.0 0.0 0.0 
P 81.5 0.5 3.9 8.2 6 
S04 4.5 9.5 10.7 67.9 7.5 
Cl 0.0 0.0 0.0 0.0 100.0 
K 38.8 0.0 4.4 56.7 0.2 
Ca 42.0 39.6 0.0 0.0 18.4 
Mn 0.0 54.9 33.1 8.5 3.5 
Fe203 19.0 59.2 14.4 7.4 0.0 
Cu 18.5 56.8 9.1 15.6 0.0 
Zn 9.0 0.5 87.5 0.0 3.1 
Br 19.4 12.1 5.7 33.4 29.4 
Pb 10.7 0.0 81.4 7.9 0.0 
Corg 0.0 8.0 0.0 92.0 0.0 

 
Table 8 is used to identify the nature of the sources. For 
instance, Al203 and SiO2 are exclusively emitted by source 
1. Because Al203 and SiO2 are known to have natural 
origins, this source is associated to the soil dust pollution 
source. We proceed in the same way for the other 
sources. We thus obtain possible identifications of the 
five pollution sources, see Table 9.  
 
 

Table 9: Receptor model sources identification 
k =1 Soil dust 
k = 2 Vehicles 
k = 3 Industry 
k = 4  Combustion 
k = 5 Sea 

 
One can note that the sources identified in Table 9 are 
the same than those found with FA in Table 6. To verify 
the coherence of these sources identifications, we have 
calculated, in Table 10, the correlations between the 
factors obtained with FA and the sources obtained by 
receptor modeling (the columns of G ). We observe that 
the factors match well with the receptor model sources. 

ˆ

 
Table 10: Correlations between the sources of the 
receptor model and the factors of FA 
 Source 

1 
Source 

2 
Source 

3 
Source 

4 
Source 

5 
Factor 1 0.98 -0.18 -0.11 -0.02 -0.18 
Factor 2 0.11 0.12 0.06 0.95 -0.30 
Factor 3 -0.05 -0.09 0.98 0.02 -0.15 
Factor 4 0.12 0.96 0.10 0.11 -0.22 
Factor 5 -0.02 -0.13 -0.10 -0.27 0.88 

 
Source descriptions. The matrix B̂  of the sources profiles 
is reported in Table 11. We notice that, according to 
these profiles, Corg which represents almost the total 
concentration in PM2.5, is only emitted by the vehicle 
and combustion sources. It is also possible to describe the 
composition of the sources using  Table 11: for instance, 
sea pollution source is made of around 75% of Chlorine 
and 23% of S04.  
 

Table 11: The sources profiles 
 Soil dust Vehicles Industry Combustion Sea 
Al O3 2 41.6 0.0 0.0 0.0 0.0 
Si02 18.5 0.0 0.0 0.0 0.0 
P 6.2 0.0 0.7 0.0 0.6 
S0  4

Cl 
10.1 15.3 59.6 12.2 22.6 
0.0 0.0 0.0 0.0 74.5 

K 12.9 0.0 3.6 1.5 0.1 
Ca 2.4 1.6 0.0 0.0 1.4 
Mn 0.0 0.2 0.3 0.0 0.0 
Fe 03 2

Cu 
6.7 15.0 12.7 0.2 0.0 
0.3 0.7 0.4 0.0 0.0 

Zn 0.7 0.0 16.3 0.0 0.3 
Br 0.2 0.1 0.2 0.0 0.5 
Pb 0.3 0.0 6.2 0.0 0.0 
Corg 0.0 67.1 0.0 85.9 0.0 

 
Source apportionments. From the matrix Ĝ  of the source 
contributions, we can derive some interesting comments. 
First we can focus on the relative contribution of each 
source in each particle sampler. For instance, Figure 13 
represents the relative contributions of the combustion 
source in the 61 particle samplers. We can notice the 
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increase in the part of this source in the second period of 
sampling, corresponding to a decrease in the temperature 
(see Figure 8). 
 

 
Figure 13: Relative contribution of the source combustion 
to the samples 

We can also focus on the contribution of the sources to 
PM2.5 dust contamination during the sampling period. 
Figure 14 shows the domination of the combustion source 
during this winter sampling period. 

 
Figure 14: Global sources contributions to the PM2.5 dust 
contamination 
 
5. Conclusion 
 
We exhibited in this case study a methodology for 
determining the apportionment of air pollution by source 
in a French urban site. The data correspond to 
measurements of chemical composition data for particles. 
Our approach is divided into two parts: first we identify 
the sources profiles via a Factor Analysis followed by a 
Varimax rotation. Then, we evaluate the apportionment 
by source of the air pollution via a receptor modeling 
approach based on Positive Matrix Factorization as an 
estimation method. The corresponding numerical results 
allow us to characterize and apportion fine particulates 
emissions by five principal sources: soil dust, vehicles, 
industry, combustion and sea.  
 
These results are hardly surprising, since they confirm 
environmental knowledge of the phenomenon of air 

pollution by fine particles. What is interesting here is the 
fact that we do not use any prior information in order to 
retrieve the usual five air pollution sources. This type of 
methodology can then be applied to any dataset and 
problems of identification and apportionment of sources. 
For mathematical details on the proposed methodology, 
the reader is referred to Chavent et al. (2007). 
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