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We examine a database of fire department emergencies in the surroundings of the city of Toulouse during the year 2004, 
using methods of statistical analysis for spatial point patterns. Firemen emergencies are characterized by their positions and 
different features (time, duration, type,…) that one can model as a spatio-temporal marked point process. For our study, 
we consider the following characteristics of firemen emergencies: positions, time of occurrences and marks which take into 
account the duration and the number of firemen involved. We use graphical methods to explore the structure of the 
underlying spatial point process with a final objective of choosing a suitable model for future work. We first review the basic 
concepts and methods used in the paper. Considering the marginal spatio-temporal point pattern, we propose to evaluate the 
importance of the variation of intensity over time in comparison with spatial variation and to test the dependence between 
positions and time. Afterwards, we conduct an exploratory analysis of the marks to test their dependence with positions as 
well as their dependence with time. Our resulting framework of independence allows us to explore the dependence between 
categories in order to test the random labeling hypothesis. Then, under the hypothesis of random labeling and invariance in 
time which have been established in the first two parts, we fit a spatial point process model to the unmarked spatial point 
pattern aggregated over the whole year. Finally, we analyze the goodness-of-fit of our models by exploring the first and 
second order characteristics of simulations from the fitted models. Throughout this article, the exploratory analysis is made 
using mainly the R package spatstat.   An exposure to point processes is useful but not indispensable for understanding the 
exposition. 

 
 
 

1. Introduction 
 
The database of firemen emergencies, provided to us by 
the fire department SDIS 31, contains the locations and 
characteristics (time, duration, number of firemen,) of 
emergencies which have required an intervention of 
firemen in the surroundings of the city of Toulouse, the 
largest town of the Midi-Pyrénées region in France, during 
the year 2004. Examples of emergencies include fires but 
also car accidents, assistance to injured people … After 

removing outliers and emergencies with missing values, we 
have the locations of 20,820 emergencies with 5,433 
distinct points in an area of 620 km . The important 
number of duplications for this spatial point pattern is 
caused by a positional error. The location of emergencies 
has not been recorded exactly but approximated by a 
nearby location which can be the centroid of the street for 
example. No information is available for this positional 
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error even if we can think that it is closely linked with the 
level of urbanization.  
 
This problem arises quite frequently in practice, for 
instance in econometrics or epidemiology (Benes et al., 
2005). For each emergency, we have in this dataset the 
location in the Lambert II extended coordinate system, the 
time of occurrence (in seconds since 1970) and the 
corresponding month. The mark we consider is the 
product of the duration of emergency by the number of 
firemen allocated to each emergency (number of 
man-hours) which thus represents a measure of total 
workload. Therefore, for us, an emergency with a low 
duration time and a high number of firemen will be 
considered as important as an emergency with a high 
duration time and a low number of firemen. 
 
The exploratory analysis of this dataset is a preliminary 
step in the study of the following problem: find the optimal 
position of a new fire station in this area. The aim of the 
present paper is to analyze the point pattern in order to 
guide the choice of a well-founded spatio-temporal 
marked point process model to be used in the follow-up 
paper by Bonneu & Thomas-Agnan (2007). 
 
The exploratory analysis of spatial point patterns often 
uses nonparametric estimates of various summary statistics 
based on first and second order properties of point 
processes. First of all, these characteristics are useful to test 
the hypothesis of Complete Spatial Randomness (CSR), 
which consists in determining whether the point pattern 
derives from a homogeneous Poisson process. Indeed, 
Poisson point processes model the absence of interaction 
between points. The intensity function is an important 
first order property which can be interpreted for 
homogeneous point processes as the mean number of 
points per unit area. Various functional summary statistics 
measure aggregation/clustering or regularity at distances 
less than different thresholds. In particular, we will 
introduce the L  function derived from the so-called K  
function introduced by Ripley (1976) for stationary 
processes and extended to a more general class by 
Baddeley et al. (2000). 
  

We then test the hypothesis of random labeling, i.e. 
whether the marks are i.i.d. and independent of the 
positions and time. The dependence between marks and 
positions can be explained by several aspects: intrinsic 
heterogeneity of the domain space, concurrence effects, 
etc. (Schlather et al., 2004). We can use geo-statistical 
methods to test this dependence if the hypothesis that the 
point pattern is a realization of a stationary and isotropic 
spatial point process is reasonable. In our case, we have a 
high heterogeneity in the population density. 
Consequently, we discretize the marks into different 
categories and graphically compare the intensity estimates. 
We also use the method in Schoenberg (2004) for testing 
the dependence between marks and positions, and settle 
with the same separability tests the matter of the 
dependence between marks and time. Our framework of 
independence between marks and positions, and also 
between marks and time, allows us to test the dependence 
between the workload categories by computing a function 
denoted by . The absence of correlation between the 
workload categories suggests the random labeling of the 
marks. This leads us to the search for an adequate model 
for the marginal distribution of the marks. 

The generalization of these statistics to spatio-temporal 
marked point processes is theoretically feasible but is not 
yet implemented in software due to large dimensions 
which does not allow straightforward graphics. However, 
for spatial point processes with categorical marks 
(multitype point processes), there is a generalization of 
these statistics which allows one to judge whether the 
point patterns corresponding to the different categories are 
generated by the same point process model (Stoyan & 
Stoyan, 1994 and Schlather, 2001). The hypothesis of 

Complete Spatiotemporal Randomness (CSTR), which 
corresponds to a spatio-temporal point process where 
there is an absence of structure in time as well as in space, 
can be tested by generalizing the summary statistics to the 
temporal case (Cressie, 1993). In practice one often 
ignores the variation in time and the dependence between 
marks and positions in order to analyze the point pattern 
aggregated over time and to separately fit a spatial point 
process model for positions. 
 
We suggest two different methods illustrated by graphics 
to evaluate the importance of the variation in time of the 
intensity in comparison with the variation in space. The 
first one consists in computing the intensity function for 
the point patterns associated with each month, for 
example, and comparing the graphs of their estimates. In 
the second one, we introduce estimates of a measure of the 
variation in time and variation in space and we compute 
the resulting ratio. This ratio enables us to understand if 
the temporal variation can be viewed as negligible 
compared to the spatial variation. For testing the 
dependence between positions and time, we present the 
results of separability tests of the marginal spatio-temporal 
point process introduced in Schoenberg (2004) which 
involve a comparison of the intensity and the product of 
marginal conditional intensities. 
 

crossL

 
The results thus obtained suggest that it is reasonable to 
aggregate the spatial point pattern over time. But, because 
of the high number of emergencies and duplicated 
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locations, the modelling of the whole point pattern is very 
difficult. Consequently, we choose to analyze the 
emergencies of a particular month, for example, June. In 
this analysis, the major difficulty in choosing a suitable 
model consists primarily in adjusting the intensity function 
as well as possible. We present three methods of 
estimation of the intensity: parametric, nonparametric and 
semi parametric. For each different estimate of the 
background intensity, we test the absence of interaction 
for this point pattern by plotting an estimate of the L  
summary statistic and the pointwise envelope from 
simulations of an inhomogeneous Poisson process. Finally, 
we choose a fitted model which presents approximately 
the same first and second order properties as those of the 
spatial point pattern. 
 
In this paper, we mainly use the R package spatstat for 
analyzing the spatial point process (Baddeley & Turner, 
2005 and Baddeley & Turner, 2006). 
 
2. Background on summary statistics 
 
By definition, a spatial point process X  is a random 
countable subset of a space S . As in our example, we 
focus on point processes X  whose realizations are finite 
subsets of a compact set . A spatio-temporal 
marked point process Y  with 

points , marks m  and times 

S
,mx

W ⊂
{(=
M∈

}, Xt ∈x

t
:) xx

S∈x x T∈x  is 
defined to be a spatial point process on the product space 

. In the sequel, the definitions are given for a 
spatial point process 

T×MS ×
X  in  but can be 

generalized to higher dimensions. For convenience, we 
number the points of a realization  even if 
we must keep in mind that a point pattern is unordered. 
For a spatial point pattern with duplicated points, we often 
plot the distinct points with their number of duplications. 
However, due to the high proportion of duplicated points 
in our case, we choose to plot perturbed locations for a 
better readability. For the perturbation of locations, we use 
Gaussian noise with zero mean and standard deviation 
equal to 50  in each coordinate. Our choice for the 
standard deviation follows from the empirical distribution 
study of the inter-events distances. Figure 1 (Left) plots 
the perturbed locations of 2007  emergencies in June, 
suggesting a high inhomogeneity in the distribution of 
emergencies due to the density of population. In the 
sequel, we always consider the perturbed locations of 
emergencies obtained from the same Gaussian noise. This 
choice is justified later by the difficulty in using methods 
based on the 
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K  function for a point pattern with a high 
number of duplicated points (envelope, minimum contrast 
estimation…). 

2.1. Estimation of the intensity λ  
 
The process first-order characteristic is its intensity 
function λ  defined as 
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where δd  is the elementary area around s  and )( δdN  
the number of events in this area. 
 
If λ  is constant, then X  is said to be homogeneous with 
intensity λ , otherwise it is inhomogeneous. The 
estimation of λ  is the first step in any exploratory analysis 
of a point pattern and aims to evaluate the homogeneity of 
the process. In our case, it is inappropriate to assume 
homogeneity because of the spatial correlation of 
emergencies with the human settlement pattern which is 
not stationary. Due to the presence of inhomogeneity, we 
use a kernel method to estimate the intensity function. 
Our absence of information about the positional error of 
emergencies does not allow us to use the new kernel 
estimators introduced in Cucala (2006). Consequently, we 
choose to estimate the intensity function on the locations 
perturbed by the Gaussian noise defined before. The 
chosen estimate is presented in its anisotropic form with a 
border effects correction (Diggle, 1985) : 
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−− ,  is the density 
function of a standard bi-dimensional Gaussian variable 
and c  is an estimate of the edge correction factor 

. In its isotropic form K  is 

the kernel with standard deviation h  defined by 
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The choice of a good bandwidth  is difficult in practice, 
notably with very wide variations in 

h
λ  as mentioned in 

Diggle et al. (2006). Indeed, the method proposed in 
Berman et al. (1989) of minimizing an estimation of the 

mean square error of  produces in our case a value of  
close to zero. For selecting an optimal diagonal matrix 

λ̂ h
H  

we can use a plug-in method implemented in the R 
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package ks with binned pilot estimation (Wand & Jones, 
1994). The diagonal terms of the bandwidth matrix 
obtained are sufficiently small to capture changes in 
population density between urban and rural environments 
and to avoid problems of under-smoothing. For the point 
pattern of emergencies in June, the smoothing parameter 
is between 700  and  meters for both coordinates. 
We subsequently use the isotropic form with 
bandwidth . Figure 1 (Right) represents the 
logarithm transformation of the intensity estimate of 
emergencies in June. This transformation achieves an 
enhancement of variations of intensity around cities 
smaller than Toulouse. 
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Figure 1 : Left : Perturbed locations of the 2007 
emergencies in June. Right : Logarithm transformation of the 
estimated intensity of emergencies in June. 
 
2.2. Estimation of the K-function 
 
To study the spatial dependence over a wide range of 
scales, we can use summary statistics based on a number of 
known second order properties. Here, we only consider the 

 function derived from the L K  function introduced by 
Ripley (1976) for stationary processes and extended to the 
class of second order intensity-reweighted stationary 
processes by Baddeley et al. (2000). The theoretical K  
function for a stationary spatial point process is the 
expectation of the number of extra events within distance 

 of a randomly chosen event, divided by the 
intensity 

0≥r
λ . The L  function is then defined by 
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where  is a boundary correction factor and  

the area of W. The more common boundary correction 
factor is the translation correction factor 

, where 

rxxw
ji ,,ˆ

|, ∩=
j

Wr
{=xj

| |W

1|,
−

− jii xxWxxw

:xxxW jii
∈ }W−+− ξξ , but it is 

computationally expensive for large point patterns. So, in 
our case, we prefer the border correction factor 
implemented in spatstat, 
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where W∂  is the boundary of the observation window. 
 
Afterwards, in order to study the correlation structure in 
multivariate point processes such as , cross 

summary statistics  can be introduced for 
the non-stationary case in the same way as was done with 
the 

),(= ZYX
),( ZYK cross

inhom

K  function. The definition of 
concerns 

cross-second-order-intensity-reweighted stationary 
processes; an estimate is given by 
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(1) 
The  function is the extension to the multivariate 

case of the  function for the univariate case. For 
convenience and where there is no possible confusion, we 
use the notations 

cross
inhomL

inhomL

K ,  and  respectively for 

,  and . 

L crossL

inhom LK inhom
crossLinhom

r  for all . At least for small values 

of 

0≥r
r ,  indicates aggregation/clustering at 

distances less than 
0>rL −)(r

r , and  indicates 
regularity. More precisely, because 

0<)( rrL −
K  is a cumulative 

function, a significant peak of L  above  shows the 
maximum range of aggregation and should be interpreted 
with care beyond this point. For second order 
intensity-reweighted stationary point processes 

0

X , we use 
the following estimate of the inhomogeneous K  function 
introduced in Baddeley et al. (2000) : 

 
2.3. Envelope 
 
In general, let us consider a statistic  and a given 

hypothesis . Typically, the null hypothesis can be the 

)(rL
0H
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be the

absence of interaction, the random labeling hypothesis or 
the goodness-of-fit of a given model. Critical intervals are 
necessary to judge the deviance from the null hypothesis of 

a nonparametric estimate of a summary statistic. Let )(ˆ rL  
 estimate computed from the observed point process 

X  in W , an ),(ˆ
1 rL  obtained from 

i.i.d. simulations X ,1  0H . F each value 
of 

d  those

or 

 )(ˆ, rLm

mX,  under
r , we can estimate any quantile of the distribution of 

)(ˆ rL  under H  the irical distribution of 

(ˆ,),(ˆ
1 rLrL m  eno h. The quantiles 

)(rLl  and (rLu ct the critical interval 
are called respectively the lower and the upper envelope. 
We obtain a pointwise envelope because we have a critical 
interval for each value of 

0  from emp
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)  used to constru

ug

r . Throughout this paper, t  
envelope is computed from 39  simulations with pointwise 

ima and maxima in order to have for each 

he
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probability that the estim e o )(r  falls outside the 
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3. Time variation and spatial variation 
 
In this section, we focus on comparing the relative 
importance of time variation and spatial variation in the 
intensity of the spatio-temporal point process. In practical 
situations, unless the importance of time is well-known 
and predominant (earthquakes…), the dependence on 
time is often ignored by aggregating the spatial point 
process over time. Even so, there does exist some literature 
on spatio-temporal point processes models (Diggle 
(2006)), so we would like to make sure that this 
aggregation is well justified in our case. Because it will be 
impractical to simultaneously model space, time and 
marks, we choose to ignore the possible dependence 
between marks and time. We thus perform this 
investigation by aggregating the marked process into a 
single unmarked one. Diggle et al. (2005) propose a Monte 
Carlo test to investigate temporal changes. We propose to 
decompose the spatio-temporal process into 12 monthly 
realizations. A first approach is to compare the logarithm 
transformation of estimates of the intensities for each 
month (Figure 2). At first sight, the estimates of intensities 
do not show important modifications in shape and seem to 
present a temporal trend with a low rate of change. Indeed, 
we only note a slight trend in the total number of 
emergencies through the year. 
 
A second approach consists in computing the ratio 
between an estimate of the time variation and an estimate 
of the spatial variation of intensity. To measure the time 
variation at a location , we introduce 
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Figure 2 : Logarithmic transformation of intensity by month. 
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The image ratio  indicates that the time 
variation is negligible in comparison with the spatial 
variation. Indeed, the time variation represents 0.5  
percent of the spatial variation at most. Figure 3 shows the 
logarithm of this ratio which reflects well the high spatial 
inhomogeneity in this domain. 
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Figure 3 : Logarithm of the image ratio between the time 
variation and the spatial variation of intensity. 
 
Finally, we investigate the separability of the intensity 
function of the spatio-temporal point process  as 
in Schoenberg (2004), i.e. we test whether we have 
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graphics as in section 4.2 where we discuss dependence 
between marks and time. To compare the two estimates, 
we compute four statistics defined in Schoenberg's article 
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Abnormally large value of these test statistics indicate a 
departure from the separability hypothesis. The intensities 
and the probability density are computed with the kde 
function in the R package ks, initially programmed for 
density estimation. This function allows computing of the 
density/intensity for three dimensional point patterns. So, 
in order to obtain intensity estimates, we multiply the 
result by the number of points. These estimates are not 
adjusted by a correction factor for border effects. To judge 
the significance of these statistics, we construct one-sided 
Monte-Carlo tests from 19  simulations of a Poisson point 
process under the null hypothesis of separability. If the 
statistic test  is lower than the maximum value obtained 
from the simulations then we accept the separability 
assumption at level 5% . For computational reasons, we 
limit our study to a subsample of  emergencies 
randomly chosen. Here, the four tests conclude to the 
separability assumption. Note that this Monte-Carlo 
inference is based on simulations from the Poisson model, 
an assumption that we will discuss later in the paper. 
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The different approaches show that the variation in time is 
negligible in comparison with the variation in space and 
that there is independence between positions and time. 
We therefore consider that we can aggregate the point 
pattern over time without losing important information. 
 
4. Analysis of the workload mark 
 
4.1. Dependence between marks and positions 
 
Marks and positions are often assumed to be independent 
but this may not hold in practice. For instance, in forestry, 
the diameters of trees can be dependent on the nature of 
the soil and of the presence of others trees nearby. In the 
case of firemen emergencies, it is possible that the 
frequency of large workloads emergencies is higher in some 
areas. Another type of dependence arises from the fact 
that an occurrence may have an influence on future 
emergencies around it. The first type of dependence seems 
more likely here. 
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Summary statistics for marked point processes are 
introduced in Stoyan & Stoyan (1994) and Schlather 
(2001) to test the dependence between continuous marks 
and positions. However, these statistics are just defined for 
stationary and isotropic marked point processes. In these 
articles, the marks process is modeled as a random field 
and the authors can apply geostatistical methods. In 
Schlather (2004), the test of dependence is valid for any 
random field model where the marks are given by a strictly 
monotone transformation of a Gaussian random field. This 
last assumption on the marks is not necessary for the test 
based on the conditional expectation of marks developed 
in Guan (2006). Guan's method allows the treatment of 
examples with a bimodal distribution of marks. However, 
to our knowledge, tests of dependence between 
continuous marks and positions in the case of 
inhomogeneous point processes are not available. 
 
We next use two empirical approaches to test the validity 
of the independence. We first use the same method 
developed for testing the temporal trend. We discretize 
the logarithm of workloads, to mitigate the influence of 
outliers, into three categories: Low, Medium, and High. 
This discretization is performed by applying the k -means 
method minimizing the within category variance. Figure 4 
represents the logarithm transformation of the estimated 
intensity for the different categories of the multitype point 
patterns. The patterns of estimates are close together 
across categories but different in total mass. This suggests 
that the point patterns could be generated by the same 
point process model with a different expectation of the 
number of points. 
 
To confirm the conclusion of independence between 
marks and positions given by the previous approach we 

now investigate Schoenberg's method. The statistic tests 
based on  and  accept the separability assumption 

whereas those based on  and  reject this hypothesis. 
This situation is not clear-cut and allows us to consider 
one of the two cases. However, taking into account this 
dependence implies looking for a more complicated model. 
One can find some reasons to believe in dependence 
between marks and positions for some categories of 
emergencies (fires, car accidents …) but we think that this 
dependence is not very important when considering all 
types of emergencies simultaneously. 

1S 2S
5S 6S

 
Finally, taking into account the different methods used, 
the hypothesis of independence between the occurrences 
of emergencies and the workload marks is not as clearly 
established as in the case of time and location. 
Nevertheless, we maintain this hypothesis of 
independence in order to avoid an intractable model. 
 
4.2. Dependence between marks and time 
 
We investigate the dependence between marks and time 
through the separability method. In this case, the 
bidimensional framework allows to present straightforward 

plots of the estimates of  and λ̂ λ~  for the marginal 
marked temporal process (Figure 5). 
 
The graph supports the separability assumption. This 
conclusion is emphasized by the Monte-Carlo separability 
tests which do not reject the separability assumption. 
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Figure 4 : Logarithm transformation of estimated intensity by category. Up : Small workloads. Middle : Medium workloads. 
Down : High workloads. 
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4.3. Dependence between mark categories 
 
Next, we test the dependence between the emergencies of 
different categories of marks by estimating the functions 

 for all pairs of categories. These functions measure 
the dependence between points of types i  and 

crossL
j  at 

distances . The calculation of  requires a great 
deal of memory, so we restrict our study to the June 
emergencies. We estimate the overall intensity of all the 
emergencies by a semiparametric method using a model 
with a single covariate (population) as is done in section 5. 
As in Moller & Waagepetersen (2004), the estimated 
intensity for each category is chosen to be proportional to 
the overall intensity estimate in order to have an 
expectation of the number of points equal to the number 
of emergencies in each category. The 39  simulations for 
the envelope calculation are obtained by taking the same 
positions of the multitype point pattern but with a random 
permutation of categories. Figure 6 presents the estimates 
and envelopes of  corresponding to the three pairs of 
categories: (Low,Medium), (Low,High) and 
(Medium,High). For the three pairs of categories the 
estimated  lies within the envelope even 
though it appears to track the upper envelope boundary 
and sometimes exceed it in a few instances. So, we can 
consider that the emergencies of different categories of 
marks are independent. The independence is not a 
surprising hypothesis in this practical example and is 
verified under the assumption of independence between 
marks and locations (proportional intensities). 

0≥r

Lcross

crossL

crossL

rr −)(

 
4.4. Marginal distribution 
 
The previous sections have concluded that we can model 
the marginal point pattern of positions and marks 
separately in order to avoid a more complicated model. 
This is the reason why now we analyze the marginal 
distribution of marks. Figure 7 (Left) presents the 
histogram of the logarithm of workloads. At first sight, one 
may think that a log-normal model is acceptable 
considering the empirical marginal distribution of marks. 
However, the Normal Q-Q plot of the logarithm of marks 
in Figure 7 (Right) shows that it is not a reasonable choice. 
The kurtosis value is far away from the kurtosis value of 
the adjusted normal model. Many others transformations 
with the aim to obtain a normal distribution as well as 
different models were attempted but none of these were 
satisfactory. The transformations considered include the 
Box-Cox transformation with an optimal parameter 
chosen by boxcox.fit (package geoR), inverse 
transformations, etc. Moreover, we have tried in vain to fit 
several models from the logarithm of marks (Cauchy, 
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Figure 5 : Up : Intensity estimate . Down : Intensity 
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Figure 6 : Estimated  for the three pairs of 
categories on emergencies in June (solid line), average and 
envelope from 39 multitype point patterns with same 
locations but categories given by a random permutation 
(dashed lines). 
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Figure 7 : Left : Histogram of the logarithm of workloads. 
Right : Normal Q-Q plot of the logarithm of workloads 
(xaxis : Theoretical Quantiles, yaxis : Sample Quantiles). 
 
Gaussian Mixture …) or directly from the marks 
(Exponential, Generalized Pareto, Generalized Extreme 
Values …). This difficulty in obtaining a satisfactory 
model for the workload marks suggests that we should 
consider a bootstrap procedure for generating “simulated” 
samples. 
 
5. Model 
 
On the basis of the previous analysis, we decide to consider 
in this section the marginal spatial point pattern of 
positions aggregated over the year for fitting a spatial point 
process model ignoring the marks. But, due to the high 
number of locations, we take a subsample of this point 
pattern corresponding to emergencies of a particular 
month, for example, June. For testing the absence of 
interaction, we choose to apply a Monte-Carlo test by 
computing simulated envelopes of the inhomogeneous  
function under an inhomogeneous Poisson process model. 
The first step in order to estimate the L  function and to 
simulate realizations of an inhomogeneous Poisson process 
is to estimate the intensity function. We investigate three 
methods for estimating the intensity: parametric, 
nonparametric and semi parametric with one covariate. 

L

 
5.1. Parametric and Nonparametric estimation 
 
The parametric method consists in estimating the 
logarithm of the intensity with a polynomial in the 
coordinates. We estimate the polynomial coefficients by 
the method of maximum pseudo-likelihood (Moller & 
Waagepetersen (2004)). However, parametric models 
with a reasonable degree ( ) are often unsatisfactory in 
the presence of high inhomogeneity of the locations of 
points in the domain. The resulting intensity is a rough 
estimate and the coefficients are difficult to compute for 

higher degrees. 

5<

 
An alternative is to use nonparametric methods that are 
more adaptable. A major problem is always to separate 
inhomogeneity explained by the intensity λ  and 
interactions measured by the L  function. Figure 8 
(Left-Middle1) shows that our choice of  yields 
an intensity estimate and a simulated point pattern close 
to the point pattern of emergencies in June. So, from the 
point of view of the first order characteristic, an 
inhomogeneous Poisson point process seems to be an 
appropriate model. The choice of the bandwidth for the 
kernel estimation is of primary importance. As in Diggle 
(2003), the estimated  in Figure 8 (Middle2) 
shows that the selected bandwidth is too small and 
involves an over-fitting problem. Figure 8 (Right) also 
displays the estimated  and envelope when we 

use the leave-one-out estimate 

800=h

rrL −)(

rrL −)(
λ  of the intensity 

function introduced in Baddeley et al. (2000) to correct 
the bias in the estimate of . Its formula is given 
by 

r−rL )(

)(

1,

)1(
)(ˆ

1=)( six

n

i
ih

hW

xsK
sc

s ≠

=
∑ −λ  

If  and λ̂ λ  are approximated by their values evaluated 
at a fixed grid of points, the two estimators of the intensity 
surface agree with probability 1. The difference with the 
usual estimator consists in not taking into account in the 
summation the point of the pattern at which we estimate 
the intensity. The use of this estimate in the estimation of 
K  gives a better bias in the simulation example of 
Baddeley et al. than the classical one. The bandwidth 

 with the leave-one-out estimator gives here an 
envelope which is difficult to interpret due to the 
surprising form of the mean curve under the null 
hypothesis of a Poisson process (Figure 8 (Below)). 

800=h

 
Moreover we think that the use of the same data to 
estimate non-parametrically both λ  and  is 
problematic. Indeed, we obtain better results by using the 
emergencies in May for the estimation of 

L

λ , which is then 
used in the estimate of the L  function for the point 
pattern in June. Figure 9 shows that this method allows to 
fit a Poisson process model with a similar first order 
characteristic, a good simulated process and a better graph 
for rrL −)( . Finally, the envelope of rrL −)(  implies 
that we conclude to neither aggregation nor repulsion in 
the point pattern; neither do we conclude to an over-fitted 
model. However, in this case, the envelope is highly 
dependent on the choice of the subsample for the 
estimation of λ . For instance, the choice of the month of  
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Figure 8 : Top left: Nonparametric density estimation with 
bandwidth h=800 (June emergencies).  Top right: A 
simulation from a inhomogeneous Poisson process model. 
Bottom left: Estimated L(r)-r  on emergencies in June (solid 
line), average and envelope from 39 simulations of a 
inhomogeneous Poisson process (dashed lines) with . 
Bottom right: As previously with the leave-one-out estimate 

λ̂

λ  of the intensity. 
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Figure 9 Top: Nonparametric intensity estimation with 
bandwidth h=800(May emergencies). Left: A simulation 
from a inhomogeneous Poisson process model. Down : 
Estimated L(r) -r  on emergencies in June (solid line), average 
and envelope from 39 simulations of an inhomogeneous 
Poisson process (dashed lines). 

 
July for the estimation of λ  would involve an "artifact'' on 
the envelope estimate. This is a reason why we did not 
pursue this direction further. 
 
5.2. Semi parametric estimation with one covariate 
 
In many cases, the intensity of the spatial point pattern 
depends on covariates. For instance, our spatial point 
pattern is influenced by environmental and economic 
covariates: population, presence of woods … In our study, 
we have a population covariate which allows us to estimate 
the intensity of emergencies from an estimate of the 
population density. Our population covariate is the 
number of inhabitants in 296  INSEE 1  administrative 
units named IRIS2. We know the total population and the 
centroid of each IRIS. Figure 10 represents these units 
with a circle centered at those centroids with radius 
proportional to the number of inhabitants. We denote by 

2961 ,, ξξ

1 ,,N
 the centroids of the administrative units and 

by  their number of inhabitants. It is 
necessary to know the values of this covariate at every 
point in the window in order to estimate the background 
intensity. Consequently, we predict the covariate on a 
regular grid with a non-parametric predictor and then 
estimate the coefficients 

296N

α  and β  in the expression 

 by maximum 

pseudo-likelihood, where is the estimate of the 
covariate. 

)))(s
ˆ ( )C s

ˆ(log Cβ(α +exp=)(sλ

 
5.2.1. Two density estimates 
 
We present two nonparametric methods to estimate the 

population density. The first one is a classical 
nonparametric kernel method with a selected global 
bandwidth of  and a border correction factor. 
The second kernel method uses an adaptive choice of 
bandwidth based on k -nearest neighbors. At each point 
of a regular grid, we estimate the population density by 
applying an Epanechnikov kernel  with its support 

adapted in order to take into account only k  centroids. 
We arbitrarily choose . The expression for this 
estimator is 

1
ˆ ( )C s

ek

900=h

k 5=

 

                                                 
1 Institut National de la Statistique et des Etudes Economiques; 
National Institute for Statistics and Economic Studies 
2 Ilôts Regroupés pour l’Information Statistique ; areas formed for 
purposes of statistical information  
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sske −  and 

)5(
= ξ−shs  is the fifth order statistic of distances 

between  and the IRIS centroids. We do not use here 
any correction factor for border effects. 

s

 
Figure 10 displays the logarithm transformation of these 
two density estimates. We note that the second approach 
has the advantage of clearly identifying the biggest cities in 
this region. Unfortunately, the intensity is 
under-estimated near the boundary of the observation 
region. 
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Figure 10 : Top: Proportional symbol map of the number of 
inhabitants per IRIS. Borrom row: Logarithmic 
transformation of the population density estimated by a 
nonparametric kernel method with a global bandwidth (Left) 
and a local bandwidth obtained by k-nearest neighbors 
(Right). 
 

5.2.2. Models based on density estimate  1Ĉ
 
First of all, we focus on models constructed from the 

density estimate  obtained by the first method. By 

maximum pseudo-likelihood, we obtain 
1Ĉ

α̂  and  and 

write  for all  in the 

point process with intensity λ̂  and an envelope which 
lead us to reject the hypothesis of no interaction, and 
suggests aggregation for 1500

β̂
)))(ˆ(logˆexp=)(ˆ

11 sCs βλ +ˆ(α s
regular grid. Figure 11 shows a simulation of a Poisson 

1

≤r . 
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Figure 11 : Up : A simulation from a inhomogeneous 
ted  

on 

e tested three inhomogeneous point processes models of 

Poisson process model with intensity 
1̂λ . Down : Estima

L(r) –r on emergencies in June (solid line), average and 
envelope from 39 simulations of an inhomogeneous Poiss
process (dashed lines). 
 
W
clustering : the Matern cluster process and the Thomas 
cluster process which belong to the class of Neyman-Scott 
processes and the Log Gaussian Cox Process. 
Neyman-Scott processes and Log Gaussian Cox processes 
are cluster processes in the class of Cox processes. A Cox 
process is obtained by considering the intensity function of 
the Poisson process as a realisation of a random field. 
Neyman-Scott processes are obtained by clustering points 
around a homogeneous Poisson point process with 
intensity κ  (“mother” process). A realization of a 
Neyman-Scott process is obtained by all the realizations of 
independent Poisson processes at each “mother” point. 
This daughter point process has an intensity function 
which depends on a kernel function. The two point 
process models considered here are given by a specific 
kernel (Moller & Waagepetersen (2004)). For a Log 
Gaussian Cox process, the intensity function is the 
exponential transformation of a Gaussian field (Moller et 
al. (1998)). 
 
The inhomogeneity can be incorporated by different 
methods (Jonsdottir (2004)). But, for the class of 
Neyman-Scott processes, it is necessary to incorporate this 
inhomogeneity by thinning as in Waagepetersen (2006). 
Indeed, this method is the only one that allows to get an 
inhomogeneous Neyman-Scott process which is 
second-order intensity reweighted and for which the 
inhomogeneous K  function is well defined. Thinning is 
an easy method by which to simulate inhomogeneous 
point processes : we simulate a realization of a stationary 
point process X  and afterwards apply an independent 

thinning method by the field defined from 1̂λ  to obtain a 
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realization of an inhomogeneous point process Y . The 
advantage is also that the inhomogeneous K  function of 
Y  coincides with the K  function of X . This fact allows 
us to estimate the parameters κ  and ω  of the point 
process model by minimizing the contrast 
 

qa ˆ dt2r;κKKinhom0
,(( −∫  r)( q)ω )

 
hw ere ),;( ωκrK  is known for the class of point process 

i  the point 

models presented before. For the choice of a  and q , 
Diggle (2003) recommends to choose a  considerably 
smaller than the dimension of the observation plot and 

1/4=q . We take 4000=a  meters. 

method modif
 
The thinning 
p

es the structure of
rocess model. For example, Figure 12 (Left) displays a 

simulation of the fitted inhomogeneous Thomas cluster 
process which shows that the expected number of points 
per cluster is different. If we incorporate the 
inhomogeneity by considering an inhomogeneous Poisson 
point process for the “mother” points, then the usual  
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Figure 12 : Up: A simulation from an inhomogeneo su  
Thomas point process model obtained by thinning. Down 
Estimated  L(r)-r on emergencies in June (solid line), average 
and envelope from 39 simulations of an inhomogeneous 
Thomas point process model obtained by thinning (dashed 
lines). 
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Figure 13 : Left: A simulation from an inhomogeneous 

)-r 

ary 
of points per cluster is 

the fitted LGCP in Figure 13 (Left) 
atures aggregation areas as in our point pattern. 

LGCP model obtained by thinning. Right: Estimated L(r
on emergencies in June (solid line), average and envelope 
from 39 simulations of an inhomogeneous LGCP model 
obtained by thinning (dashed lines). 

structure is maintained in comparison with the station
case. Indeed, the expected number 
constant in this case. Figure 12 presents a simulation of the 
fitted Thomas point process which looks quite different 
from the emergencies in June. The minimum contrast 
estimation yields an expected number of “mother” points 
and a scale parameter which are too small. By 
construction, the second order characteristic of this fitted 
point process model is close to that of the point pattern 
(Figure 12, Right). 
 
The simulation of 
fe
However, these areas are wider and mainly concentrated 
around the city of Toulouse. Moreover, several areas 
exhibit no points or very few points in the simulation 
whereas they are important areas of emergencies in the 
point pattern. This is the case of the area in the 
bottom-left of the region which corresponds to the large 
city of Muret. We also note that the boundary of the 
region has generally few points in the simulation. The 
envelope of rrL −)(  is large due to the fact that the 
variability of the expected number of points in the 
simulations is y important. The envelope suggests 
that the goodness-of-fit of this model is satisfactory. 
 
We now generalize to the case of Log Gaussian 

 relativel

Cox 
rocesses (LGCP) the method proposed in Waagepetersen 

timate

ntensity 

p
(2006) for Neyman-Scott processes. 
 

5.2.3. Models based on density es  2Ĉ  
 
We consider the case where the background i

estimate 2  is derived from the density estimate 2 . 
Compared to the simulation of a Poisson point process 

with estimated intensity 1̂λ , the simulation in Figure 14 
(Left) now features more aggregated areas and reveals the 
area of the city of Muret i the bottom-left of the region. 
From the first order characteristic point of view, this point 
process is a good model of the emergencies. The 
Monte-Carlo test of no interaction in Figure 14 concludes 
that our point pattern is more aggregated for 
approximately 1500

λ̂ Ĉ

n 

≤r  and more regular for large r  
than the Poisson model. We reject the hypothesis of no 
interaction and fit a LGCP model next. 
 
The parameters of the LGCP are estimated as previously 
y the minimum contrast method and the inhomogeneity b

is incorporated by thinning. The obtained simulation 
shows that this point process model is interesting because 
the distribution of the aggregated areas is close to those of 
our point pattern (Figure 15 (Left)). There is no void large  
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Figure 14 : Left: A simulation from an inhomogeneous 
Poisson process model with intensity .  Right: Estimated 2

L(r)-r on emergencies in June (solid line), average and 
envelope from 39 simulations of an inhomogeneous Poisson 
process (dashed lines). 
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Figure 15 : Left: A simulation from an inhomogeneous 
LGCP model obtained by thinning. Right: Estimated 

n. Therefore, 
e inhomogeneous LGCP model obtained from thinning 

 

o-temporal marked point pattern of 
mergencies during one year underlines the numerous 

In the case of inhomogeneity of the positions, the global 
st of independence between positions, time and 

dependence two by two on different subsamples for 

p  kernel estimation of the population density yields 
etter point process models than the classical kernel 

 according to 

n 

orrespondence:  bonneu@cict.fr 

L(r)-r  on emergencies in June (solid line), average and 
envelope from 39 simulations of an inhomogeneous LGCP 
model obtained by thinning (dashed lines). 
 
area except near the boundary of the regio
th

by the field 2λ̂  yields a satisfactory model of the point 
pattern of emergencies in June. We only add that the 

estimate 2λ̂  should be improved by considering an edge 

correction factor in the density estimate 2Ĉ . 

6. Conclusions 
 
The study of this spati
e
difficulties faced when analyzing complex and large data 
sets. First of all, the high inhomogeneity and the many 
duplicated points are a major problem in the estimation of 
the background intensity of the emergencies. These 
difficulties result in problems in finding a good bandwidth 
h  which does not lead to over-fitting.  
 

te
continuous marks is intricate. So, we have tested this 

computational reasons. It seems hard to make a definite 
choice between the different point process models 
considered here. Indeed, the Poisson point process with 
intensity estimated nonparametrically yields a simulation 
with localizations of events close to that of our point 
pattern, but the estimate of the L  function presents some 
over-fitting. It is difficult to decide whether this 
phenomenon is due or not to an “artifact” in the estimate 
of L .   
 
With the semiparametric approach, we observe that the 
ada tive
b
estimation with a global bandwidth. So we retain as 
acceptable models for our data set the Poisson point 

process with intensity 2λ̂  and the LGCP with 

inhomogeneity obtained with thinning by 2λ̂ . The 
goodness-of-fit is satisfactory for the first order 
characteristic for the Poisson model while it is good for the 
first and second order characteristics for the LGCP model. 
In spite of the boundary errors generated by the adaptive 
kernel estimation and the variability of the number of 
points per simulation, the LGCP appears to us to be a good 
enough model of the June emergencies.  
 
The generalization to the other months is made by 

considering intensities proportional to 2λ̂
the expected number of points for each month. The marks 
realizations are obtained by a bootstrap procedure and are 
affected independently to the point patter of positions. 
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