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We present in this paper a statistical methodology to address the following industrial problem. Car manufacturers have 
to calibrate their vehicles in order to reach a level of quality which is acceptable to the customer. We consider here the 
specific case of a gear-box. Our study relies on a dataset consisting of evaluations by 507 testers of 28 configurations, 
each described by 12 physical parameters. We suggest a procedure for selecting and calibrating the physical parameters 
which have an impact on the evaluations. Our procedure consists of two steps. We first compute the regularization path 
of an L1 – penalized logistic likelihood from which we extract an increasing sequence of models. In the second step of our 
procedure, we apply the BIC criterion to select a model in the sequence obtained in the first step. We provide a simple 
numerical procedure for this approach and discuss its application to the data. This article is accessible to readers with at 
least an intermediate knowledge of statistics; previous exposure to logistic regression and the principles of model selection 
would be useful, although not strictly necessary. 

 
 
 

Description of our industrial case  
 
One of the most important activities for a car 
manufacturer is to calibrate vehicle parts. The calibration 
of some components is driven by levels of customer 
satisfaction regarding issues such as drivability, 
habitability, acoustics, ergonomics, etc. 
 
However, this implies that engineers know how to 
calibrate physical parameters in order to reach a given 
quality level which is satisfactory enough for the 
customer.  The question is of how to link those 
qualitative customer evaluations and the quantitative 
physical design characteristics of the vehicle. 
 
To address this question, we will present a new complete 
methodology, which handles subjective evaluation and 

design parameters together. Our modeling of customers’ 
appreciation yields: 
 
• the selection of design parameters that are 

explanatory, which means that they have an impact 
on customers’ subjective evaluation.  

 
• Some help with the calibration of the selected design 

parameters.  
 
The industrial application field is the evaluation of gear-
boxes. The dataset we tested the methodology on is 
described below. 
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Data  
 
The dataset consists of two types of data: 
 
Subjective data are subjective evaluations. Testers, 
selected for their high sensitivity to issues related to 
shifting gears, evaluated several different gear-boxes. The 
goal of the study is to determine what is or is not 
acceptable for the customer. For the sake of 
confidentiality we simplify this evaluation procedure as 
follows: each evaluation is one or zero.  
 
Objective data are physical design parameters. Twenty-
eight different gear-boxes are chosen: they are 
representative enough to allow for a robust analysis of 
subjective evaluations. All testers evaluate each gear-box 
several times, so that we globally handle a dataset of 507 
observations. 
 
Gear-boxes for which testers proceed with subjective 
evaluations are all measured in the same way. As they 
attempt to link subjective evaluations and physical 
parameters together, engineering experts know or have 
an idea of which design parameters are of interest. Those 
experts selected and extracted twelve potentially 
explanatory parameters from each measured signal. 
 
The dataset used in the analysis is available in the 
accompanying MS Excel file. A row is one of the 507 
samples. A column is one of the twelve design 
parameters. The data have been centered and scaled.  
 
Methodology based on logistic regression  
 
Let us now introduce a statistical model. Let Y  be the 
vector of subjective evaluations. As seen above, each 
response  is one or zero. We have: iy
 

( ) niiy ...1==Y with . { } [ ]niyi ,1,1,0 ∈∀∈
 
Our goal is the modeling of Y  on the basis of the p 
measured explanatory variables , , …,  where 

. Let X X  be the 

design matrix. The response has only two different 
ratings: we are in the field of binary classification.  

1
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X
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As mentioned above, engineers first want to know which 
variables explain the separation between the two classes 
most efficiently. A model must then be provided to 
engineers, so that they can set target values on the 
selected explanatory variables in order to reach a given 
quality level. The model must be simple enough. 

Therefore we consider generalized linear models, 
excluding the use of kernels. 
 
Our first task is to select a set of explanatory variables. 
We will keep in mind the importance of the variable 
selection aspects in the methodology we want to develop.  
 
Popular approaches to binary classifications are for 
instance classification and regression trees (CART), 
discriminant analysis (DA) or support vector machines 
(SVM).  CART, introduced by Breiman et al. (1984), can 
help with variable selection. However, in practice, this 
procedure can be sensitive to noise on data.  Model 
selection in the context of a discriminant analysis is not 
easy because of the large number of models to consider. 
Finally, support vector machines are not tailored to 
model selection.  
 
For purposes of model selection, it is crucial to rely on a 
likelihood criterion. We will base our method on the 
logistic regression likelihood, which, in the context of 
binary classification, has the following expression: 
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where β  is the regression parameter. 

Model selection 

A two step approach 
 
Since in our context a model can be considered as a set of 
variables, the number of models grows exponentially with 
respect to the number of explanatory variables. To deal 
with model selection, one often relies on penalization 
functions. First contributors in this direction were Akaike 
(1973) who introduced a penalized log-likelihood for 
density estimation and Mallow (1973) who proposed a 
penalized least square regression. We can also quote the 
work of Birgé and Massart (2004) where powerful 
theoretical results are derived in a general Gaussian 
framework. In this work the collection of models is also 
quite general. An important conclusion of these 
theoretical results is that the larger the collection of 
models, the stronger the penalization term. Moreover, the 
stronger the penalization term, the larger the prediction 
error of the estimated model. 
 
It is more favorable to perform model selection with a 
smaller number of models.  Therefore we suggest a two 
steps approach. We propose to: 

a) organize explanatory variables into a hierarchy 
b) apply a penalized likelihood method to the 

sequence of nested models.  
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The sequence of nested models comes from step a). The 
first model contains only the first explanatory variable in 
the hierarchy and each following model consists of the 
current model with the addition of the next variable in 
the hierarchy. 

Regularization path 
 
We want to organize explanatory variables into a 
hierarchy, in order to know which model with only one 
variable is best, which model with two variables is best, 
etc. Maintaining a control on the model size is a goal we 
keep in mind in addition to the other goal of the 
performance of the binary classification. 
 
There is indeed a trade-off between the model size and 
the error rate. The idea is to obtain a model which 
describes the data well enough while having a suitably 
low number of explanatory variables. Those two goals are 
indeed opposite: the best predictor with all the variables 
leads to the lowest error rate, but this best predictor is 
specific to the data and does not adapt itself well to new 
observations. 
 
The model size is defined as the number of variables 
appearing in the linear combination in (1), and can be 
interpreted as the L0 norm of the regression parameter. 
Direct handling of the L0 norm penalization causes heavy 
algorithmic difficulties and computation delays. We 
prefer here to use the L1 norm, which equals the sum of 
the absolute values of the regression coefficients, and is a 
good compromise between the L0 norm and the L2 norm 
– the Euclidian norm. We prefer the L1 norm to the L2 
norm because the L1 norm is closer to the L0 norm than 
the L2 norm which defines the Ridge regression. The 
reason for choosing the L1 norm rather than the L0 norm 
is the convexity of the L1 – penalized problem, contrary 
to the L0 – penalized one which is not convex. In this 
approach, the “model size” is thus evaluated by the L1 
norm of the regression parameter. 
 
We focus on the trade-off between effective classification 
and controlled model size. We can describe this trade-off 
as follows: 

 
• The error rate is controlled by the likelihood 

 ( )βnL
• The model size is controlled by 

1
β  

 
Combining these two terms, we define the expression: 
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where λ  is a regularization parameter. This parameter 
sets the relative importance of each of the two 
antagonistic goals. 
 
This penalized approach – in the case of standard linear 
regression – was introduced as LASSO by Tibshirani 
(1996) and well-studied in the literature since. We can 
quote the very interesting contribution by Efron et al. 
(2004).  The authors present an algorithm called LAR 
(for Least Angle Regression) which computes a LASSO 
solution (for L1-penalized least squares regression). He 
also obtains a Stagewise Regression solution by slightly 
modifying the LAR algorithm. Rosset et al. (2004) 
establish conditions on both cost and penalty functions in 
order to have a piecewise linear regularization path.  
Under those conditions, the entire path can easily be 
calculated from only a few points. Keerthi and Shevade 
(2006) suggest an approximation of the logistic regression 
loss function by a piecewise quadratic function. 

 
Methods have also been proposed for choosing λ  from 
data. For instance Zou et al. (2004) prove that the 
number of non-zero coefficients is an unbiased estimator 
of the number of degrees of freedom.  

 
Asymptotic results have also been established. For a fixed 
p, Knight and Fu (2004) prove in a more general setting 

(namely least squares penalized by ∑
=

p

j
j

1

γ
β ) than the 

LASSO formulation that there exists –asymptotically 
with n – a mass of probability at 0 when the variable is 
not in the true model.  Zhao and Yu (2006) establish that 
LASSO selects the true model consistently under a 
condition called the “Irrepresentable Condition”. Those 
statements hold in the large p setting as n gets large.  
Our approach is different since we focus on building a 
hierarchy of explanatory variables.  
 
We are interested in the order of appearance, which is the 
order in which the explanatory variables enter the model 
as the model size increases. We assume that an 
explanatory variable is more important if it appears early 
in the model linear combination. However this requires a 
lot of care, as will be discussed later in the paper. 
 
One way to obtain the explanatory variable hierarchy is 
to determine the regularization path, defined as the 
mapping ( )λλ β , where ( )λβ  is defined by (2). It 
can be computed by the LAR in the case of LASSO 
(Efron et al., 2004). 
 
In the case of the penalized logistic regression procedure, 
an algorithm presented by Park and Hastie (2006) 
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computes an approximation to the path which is inspired 
by the LAR algorithm. 
Since we focus only on the order of appearance, we do 
not need to compute the whole path. We propose later a 
different algorithm whose goal is to determine this order. 

Model selection with BIC 
 
A regularization path procedure organizes explanatory 
variables into a hierarchy, as shown in Figure 1.  We 
denote by active set the current set of explanatory 
variables in the model.  The sequence of active sets is 
displayed in Figure 1. 
 
 

 
Figure 1. The regularization path identifies the best model 
with one variable, the best model with two variables, etc. 
Reading from left to right, explanatory variables are 
organized by importance into a hierarchy. 

 
The regularization path results in an increasing sequence 
of models, as follows.  Reading the figure vertically, at the 
very left we have 0

1
=β , which corresponds to 

∞→λ . Then 
1

β  increases as λ  decreases until the 

very right of the figure, where 0=λ  corresponds to the 
maximal value of 

1
β . The coefficient vector for 0=λ  

is the result of the non-penalized logistic regression. 
Between 0=λ  and ∞→λ , we have all the 
intermediate models.  
 
In a second step, we consider the Bayesian Information 
Criterion of Schwarz (1978) for selecting the optimal 
model.  If we denote by { }  the sequence of 
models, this criterion equals: 

mkkM ...1=

 

( ) ( ),k kBIC M M⎡ ⎤ =⎣ ⎦BICβ  

( ){ } 0
inf 2log log( )

k
n kV
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∈

− +
β

β                     (3) 

where n  is the sample size of sample,  is the subspace 
of 

kV
pR  with zeros at coordinates that do not appear in the 

current model , and kM
0kM is the number of variables 

in the model . kM
 
In our procedures, we recommend selecting the model 
that yields the minimal value of the BIC sequence. This 
way we ensure good prediction performance in the sense 
that we avoid over-fitting.  Figure 2 displays the BIC 
sequence corresponding to the models sequence obtained 
from Figure 1. 
 

 
Figure 2. BIC curve. 

Numerical aspects 
 
In this section, we present an algorithm for obtaining the 
sequence of actives sets. An active set is defined as 
the set of explanatory variables corresponding to non-
vanishing coordinates of 

λA

jβ  for a given regularization 

parameter 0≥λ . 
 
At a given λ , in the setting of L1-penalized logistic 
regression, the calculation of a specific active set is a 
convex optimization problem.  
 
By (1) and (2), for a given 0≥λ , we need to compute: 
( )λ =β  

( )
1 1

arg min [ log 1 ]i

p

pn
x

i i j
i j

y x e λ β
∈ = =

⎧ ⎫
− + + +⎨ ⎬

⎩ ⎭
∑ ∑β

β R
β       (4) 

 
This criterion is clearly convex, but the L1 norm on 
coefficients is problematic for differentiation near the 
axes. That is why we rewrite this criterion as the 
following: 
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This new criterion searches for the same solution as (4) 
and is , with linear constraints.  ∞C
Such an optimization can be performed using standard 
numerical procedures. In our application, we have used 
the Matlab function fmincon to solve this optimization 
problem. 
 
A very simple way (close to the one presented by Park 
and Hastie, 2006) to calculate the path consists in a 
stepwise optimization. Beginning with 0=λ , λ  is 
increased by δλ  step by step. At each step ( )λβ  is 
calculated along with the optimization function. The 
algorithm ends when all coordinates of ( )λβ  are zero (for 
λ  large enough, all coordinates are indeed zero). 
 
The main problem is the choice of step length, which 
must be small enough to insure that all interesting points 
of the path are visited. We present an intuitive algorithm, 
which is easy to develop and reduces the number of 
optimizations to perform. 
 

Algorithm idea: instead of calculating ( )λβ  at each 
step, by increasing λ  by steps of λ∂ , we suggest 
exploring the range of [ [+∞∈ ,0λ  in a dichotomist 
way. 

   
Considering equation (4), we first note that there exists 

maxλ  such that 0:max ≡>∀ βλλ . The constraint on 
the size of the coefficient tends to infinity and thus forces 
every coefficient to be zero.  We consider the value of 

maxλ  given in Park and Hastie (2006), namely 

{ }
( )yyX jpj
−′=

∈ ,...,1maxλ max . We just need an upper bound 

on λ . 
 
We base our stopping condition on the current active set, 
that is, we decide to perform new levels of dichotomy if 
the difference between the two active sets is more than 
one in terms of cardinality.  If we denote the active set for 
a given λ  by  , the stopping condition can be written 
as:  

λA

( ) { } { } BjAABpjACOND ∪A =⊂∃∈ :,,...,1!, λλ∃:λ 1221
.  

Our algorithm is described in more detail, with comments 
in italics, in the Appendix. 

λ

 
Application to the industrial case 
 
In this section, we apply our algorithm to the data we 
presented earlier. We recall that variables are centered 
and scaled. 

Interpretation of the regularization path 
 
Our algorithm performs the regularization path presented 
in Figure 1.  For ease of interpretation, we present the 
evolution of the coefficients of explanatory variables as 
functions of 

1
β . 

 
We can summarize the interpretation of this result as 
follows. As we release the constraint, variables #1 and 
#5 enter the model nearly together. For an industrial 
application, we shall say that there is no statistical reason 
to consider one of those without the second one. This is 
the first piece of information. The BIC curve presented in 
Figure 2 contributes to the second main part of the 
interpretation, that is: both variables #1 and #5 are 
sufficient to explain the physical phenomenon we model. 
 
Those results concur with the engineers’ intuitive analysis 
of the physical phenomenon: variable #1 was already in 
the specifications and engineers had the feeling that 
variable #5 could bring some more information. Our 
statistical analysis proves them to be right. 

Sensitivity analysis 
 
In this step of the interpretation, we have found which 
variables have an impact on subjective evaluations by 
customers. Having estimated the model and the 
regression parameter β , we have in hand the 

probability ( )xXY == 1P  where Y is the gear-box rating 

and x is the value of the physical variables. 
 
Our prediction is a probability between 0 and 1. But the 
variable Y we wish to predict is binary. So in order to 
decide the value of Y, knowing that , we have to 
choose from which threshold probability we decide that 
Y=1.  

xX =

 
In statistical words, we say that we build the following 
test: 

( ) ( )
otherwise

1P if
0
1ˆ cxXY

xY
>==

⎩
⎨
⎧

= , 

where c is called a probability threshold. This test decides 
whether the physical parameter x calibrates an acceptable 
gear-box. 
 
Our job is also to determine the value of the probability 
threshold. Specifications will follow.  We can for instance 
set the threshold to a high value to harden specifications: 
only very good gear-boxes will be validated. 
 
The choice of the probability threshold is driven by the 
error rate. There are two types of error rate: the false 
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negative one and the false positive one. The false positive 
error rate is ( )01ˆP == YY  and the false negative error 

rate is ( )10ˆP == YY .  

 
From an industrial point of view, a false positive 
observation corresponds for instance to a validated gear-
box (a recast-as-“1” sample) which is criticized by the 
customer (the customer’s subjective evaluation is “0”).  
For a car manufacturer, such a false positive observation 
causes the most prejudicial type of error. 
 
Figure 3 summarizes these trade-offs graphically.  The x-
axis plots differences between a given value of the model 
linear combination and the value of the linear 
combination which corresponds to an estimated 
probability   of .8.  These differences decrease 
from left to right.  The smooth curve in Figure 3 
represents the estimated probabilities  for each 
value of the differences (note that a zero difference does 
correspond to a .8 estimated probability).  On the other 
hand, the jagged line represents the false positive rates for 
threshold probabilities corresponding to differences on 
the x-axis.  We can see that the .8 threshold probability 
corresponds to a false positive rate of about 8%.   

ˆ( 1P Y = )

)ˆ( 1P Y =

 
Note that the choice of a threshold probability of .5 
would imply a false positive rate of near 20%, which is too 
high.  Overall we feel that the choice of .8 for a 
probability threshold is a reasonable compromise. 
 
For another description of the evolution of error rates, we 
display the ROC (Receiver Operating Characteristic) 
curve in Figure 4. 

 
Figure 3. Posteriori probability and false positive error rate 
as functions of the value of the linear combination (distance 
from the separating line). Vertical line corresponds to the 
separating line in Figure 5.  
 

 
Figure 4. ROC curve. 
 
We also plot the complete sample in the space {variable 
#1, variable #5} in order to visualize the separating line 
corresponding to the probability threshold of .8.  
 

 
Figure 5. Position of the separating line corresponding to a 
probability threshold of 0.8.  Observations with Y=1 are 
green.  Observations with Y=0 are red.  Observations below 
the line have ˆ 1Y = ; observations above the line have ˆ 0Y = . 
 
For a complete industrial analysis of those results and 
recommendations, we have to point out that those figures 
can also help with design. Indeed, the links between 
values of linear combinations, separating line positions 
and probability thresholds highlighted above can help to 
calibrate a new gear-box. Engineers have to decide on a 
specific target zone in the space {variable #1, variable 
#5}. Assuming that one of the variables has already been 
calibrated and cannot be modified anymore, the target 
zone could nevertheless be reached thanks to the other 
variable. Moreover, engineers would have information 
about the gain or loss in probability for each value of the 
variables.  

Discussion  
 
We assumed above that the importance of explanatory 
variables is related to the order in which the variables 
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enter the model as the controlled model size gets larger. 
We assumed that an explanatory variable is more 
important if it appears early in the model linear 
combination. 
 
In the figure presented in this paper, the order of the two 
selected variables changes along the path. This is not a 
problem because they are selected together: we consider 
those two variables as a group.  Variables maintain a 
constant order during the path if the following 
circumstances occur: a variable which enters the model 
maintains a magnitude  
 

• larger than the following variables  
• and at the same time smaller than that of the 

active variables (variables which are already in 
the model). 

 
In practice, this is not the case. Links between 
explanatory variables such as nearly linear relations may 
have an impact on the stability of the order of variables. 
This issue becomes even more critical as soon as np > .  
 
We show in Figure 6 the following example. We consider 
the same dataset as previously, but to which we add only 
three more explanatory variables. They are measurements 
of physical parameters similar to the twelve first variables.  
 
The BIC leads us to considering two variables in the 
model. But which two variables? In this setting, the two 
first variables to enter the model (‘Var 1’ and ‘Var 5’) are 
not the same two variables as the two maximum absolute 
magnitude variables at the end of the path.  Our 
approach seems to fail because variable #5 is the second 
variable into our defined hierarchy but is the third 
variable in absolute magnitude at the end of the path. 

 
Greenshtein and Ritov (2006) give bounds on the L1-
norm and on the number of variables as n and p 
simultaneously get large, with np >> . These model 
selection procedures tend to select much larger variable 
sets. The first variables that enter the model are obviously 
of some importance in the explanation of the response 
but this procedure may have to be moderated: there 
might be a trade off to discover between those two 
approaches. 
 
The path presented in Figure 6 is ambiguous. In our 
industrial application, we discussed this phenomenon 
with industrial experts. Considering the physical 
interpretation of each design parameter, variables #5, 
#13 and #14 appeared deeply linked. Another physical 
link appeared between variables #1 and #15. 

 

Experts decided to consider only one variable, 
representative of its group. We kept variables #1 and #5.  
Experts made their choice according to the physical 
meaning of each group and have selected the variable 
which is easiest to interpret.  
 
Once the variables #13, #14 and #15 are removed from 
data, the path appears to be clearer and the selection of 
variables set is not ambiguous any more: the two variables 
first entering the model remain the two variables with the 
largest absolute magnitude along the path. 

 
This step turned out to be crucial for a good 
understanding of the problem. Discussions with experts 
enabled us to find a regularization path that can be easily 
interpreted.  It would be interesting to have an automatic 
method to clarify the regularization path. This is an open 
issue. 
 

 
Figure 6. Regularization path and BIC curve on the 
augmented industrial dataset. We note that variable #1 and 
variable #5 are the two first design parameters to enter the 
model but they are not the two with the greatest  magnitude 
at the end of the path (model resulting from the non-
penalized logistic regression). 
 
Conclusion 
 
We have considered the problem of binary classification 
using a logistic regression model. Our main objective was 
to select a few explanatory variables. We suggested  
• first to select a sequence of models by ordering the 

explanatory variables as an output of the 
regularization path of the L1 – penalized likelihood. 

• second to apply the BIC criterion to select a model in 
this sequence. 

 
Our ordering method can be summarized as follows: 
“The sooner a variable enters the regularization path as 
the penalty decreases, the more explanatory it is.” This 
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interpretation of the regularization path is ad hoc and 
thus needs some care in practice. As we applied this 
approach to our industrial case, we relied on experts to 
first clean up the regularization path so that the selected 
variables also correspond to those having large regression 
coefficients order of magnitude in the regularization path. 
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Appendix:  Description of Algorithm: 
 
1) Initialization: calculation of maxλ .  

{ }
( )yyX jpj
−′=

∈ ,...,1max maxλ   

set ( ) ( max21 ,0, )λλλ ←  

calculate  and  
1λ

A
2λ

A
2) While ( ){ }

21
, λλ A  We are going to cut the ACONDnot

λ  range until the two active sets 
1λ

A  and 
2λ

A   are equal 

or differ by exactly one variable. 

a) 
2

21 λλ
μ

+
= . We split the λ  range in its middle. 

b) calculate  μA
c) while ( ){ }

2
, λμ AA , do CONDnot

i) if 
2λμ A , do A =

(1) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

← μ
λλ

λλμλ ,
2

,,, 21
121

 We 

dichotomize this other side of the λ  range. 

(2) calculate the new  μA
(3) calculate the new 

2λ
A  In fact, this calculation 

is not performed because we already have 

calculated the new 
2λ

A : it is μ . A
ii) end if 

iii) if 2
2
≥− λμ AA , do 

(1) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

← 2
21

21 ,
2

,,, λ
λλ

μλμλ  We have 

not split enough. We keep dichotomizing this 
side. 

(2) calculate the new  μA
(3) calculate the new 

2λ
A  Same remark as in 2) 

c) i) (3): the new 
2λ

A  is already calculated: it 

is 
2λ

A . 

iv) end if 
d) end while 
e) ( ){ }{ }μλμλλλ AACONDnotand ,:max1 <Λ∈←  

Let Λ  be the set of λ  already calculated. During the 
algorithm, calculations of active sets give much 
information. We can improve the algorithm by looking 

for the more judicious 1λ  to consider. 

f) { }μλλλ AA =Λ∈← :min2  The more judicious 

2λ  to consider is the lowest value of λ  for which 

μλ AA = . 

3) end while 
4) end 
 

 
 
 

The algorithm summarized: 
 

1) 
{ }

( )yyX jpj
−′=

∈ ,...,1max maxλ   

set ( ) ( )max21 ,0, λλλ ←  

calculate  and  
1λ

A
2λ

A
2) while ( ){ }

21
, λλ AACONDnot  do 

a) 
2

21 λλ
μ

+
=  

b) calculate  μA
c) while ( ){ }

2
, λμ AA , do CONDnot

i) if 
2λμ AA = , do 

(1) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

← μ
λλ

λλμλ ,
2

,,, 21
121

 

(2) calculate  μA

ii) if 2
2
≥− λμ AA , do 

(1) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

← 2
21

21 ,
2

,,, λ
λλ

μλμλ  

(2) calculate  μA
d) ( ){ }{ }μλμλλλ AACONDnotand ,:max1 <Λ∈←  

e) { }μλλλ AA =Λ∈← :min2  
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