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Statistical decision theory provides an attractive framework to help choose decisions under
uncertainty. Unfortunately, it does not seem to be often implemented for specific applications.
In this paper, we rely on this theory to determine the optimal sampling plan for a plant
producing diced bacon. Sampling plans are widely used in the food industry to assess the
quality of products. After presenting the most common sampling plan in use, we develop a
Bayesian reanalysis to interpret the common practice for sampling by attribute. Then, we
turn to a more elaborate problem and propose a way to get the best plan by minimizing the
expected cost a food plant could face. Although the cost function was designed to be easily
understandable by manufacturers, we encountered difficulties in determining the correct costs
through discussion with an expert. After correction, our alternative approach gives applicable
results. We finally discuss what we learnt from this practical experience and give our thoughts
on how cost elicitation could be improved and extended by discussing with more manufacturers.
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1. Introduction

Statistical decision theory attempts to for-
malize many probabilistic engineering design
questions into a unified theory of decision-
making under uncertainty. This field of sta-
tistical decision initiated by Bernoulli (1738)
was developed by the work of Wald (1950),
searching for a common presentation of hy-
pothesis testing, model choice and estimation
techniques within the frequentist framework
with a loss function. The field was further en-
riched by Bayesian statisticians such as Savage
(1954); Raiffa (1968) and Raiffa and Schlaifer

(1961). Following these authors, decision-
makers should transform the stakes of the
competing decisions (including costs) into a
so-called (multiattribute) utility function (the
modern counterpart of Bernoulli’s moral ex-
pectancy of the St. Petersburg paradox) and
behave in risky situations as optimizers of the
expected utility with their state of knowledge
being quantified by means of a random vari-
able. The rigorous formalization of the theory
is built upon the five mathematical axioms
given in Pratt et al. (1964). During the last 60
years, experiments on behavior under risk have
exhibited a series of “paradoxes" (Allais, 1953,
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1979), mostly linked to discrepancies between
observable rationality of a decision maker un-
der risky situations (Piattelli-Palmarini, 1995)
and the expected utility optimization princi-
ple (Machina, 1987). New models of behav-
ior under uncertainty have been developed
(Machina, 1982; Quiggin, 1964; Tvesky and
Kahneman, 1992), trying to propose and ex-
plore other settings of decision under risk (Mu-
nier, 2008). However, many reasons strongly
advocate keeping the old rationale of expected
utility (Lindley, 1991, 2006), since:

1. It agrees with common actuarial practice,
at least for private or public investments
when the utility function is the mere ad-
dition of costs and benefits, eventually
time discounted; (it makes sense for big
companies to work with such a loss func-
tion as a practical first order simplifica-
tion that neglects possible risk aversion
for extreme stakes)

2. It guarantees an always positive value
of information ( i.e., on average, a better
state of information can never worsen
the decision in the sequential setting of
statistical learning);

3. It works coherently within the Bayesian
statistical framework (Berger, 1985),
which allows for a predictive probabilis-
tic understanding of what the future
holds in store (Jordaan, 2005; Kadane,
2011; Pasanisi et al., 2012).

However coherent and simple this statistical
decision setting might seem, at least two dif-
ficulties occur when trying to go from theory
to practice: (i) how does one get the prior dis-
tribution describing the current knowledge for
the unknown of the problem and (ii) which
loss function should one implement? In the
applied statistical literature, one can find sev-
eral papers about the way to encode human
expertise into prior distributions (Chaloner,
1996; Jaynes, 1968; Kass and Wasserman, 1996;
Kadane et al., 1998; O’Hagan et al., 2006; Albert
et al., 2012) but there are fewer articles about
how to quantify the consequences of compet-
ing decisions (see for instance Krzysztofowicz
and Duckstein, 1980; Farquhar, 1984; Abdel-
laoui et al., 2005). This paper focuses on the
latter point and relates the authors’ personal

experience of hope with a Bayesian reanaly-
sis of the sampling plan by attribute but also
some despair when turning to more elaborate
designs and attempting to obtain a loss func-
tion. As a very simple but real case study, we
study a diced bacon producing plant. Follow-
ing the Bayesian guidelines, the cost function
should reflect the consequences of the deci-
sions based on the sampling plan under the
range of possible sanitary conditions in the
plant. The main issues about pathogens in
such food and the current practice of sampling
to monitor the production and to control the
microbial conditions in the diced bacon pro-
cess are explained in Section 2. In Section 3, we
review the necessary ingredients for statistical
decision theory with special emphasis on the
construction of the decision rule, which offers
a nice Bayesian reinterpretation of the classi-
cal sampling plan by attribute. In Section 4,
we undertake the task of eliciting a cost func-
tion following this theory and illustrate the
many difficulties encountered with the case
study depicted in Section 2, however simple it
may look at first sight. Section 5 illustrates the
tricks to which we had recourse as a remedy
to the previous silly results obtained when go-
ing bluntly from theory to practice. We obtain
more sensible results that are compared to the
common ordinary industrial practice. Section
6 contains some conclusions and a discussion
on the perspectives opened by this work.

2. Context

2.1. Diced bacon process and the need for sam-
pling plans

Diced bacon is a typical French product. It is
made of pork breast which is tumbled with
brine containing salt and different organic
acids, then steamed at about 50◦C, chilled at
-15◦C and diced before being packed under a
modified atmosphere. The average consump-
tion of a French family reaches 3 kg of diced
bacon per year (see Table 5 of Legendre (2008))
thus placing it in the category of common
foods. It is usually consumed cooked but one
study showed that 14 % of consumers eat diced
bacon raw (AFSSA, 2009); as a consequence, it
can also be classified as a ready-to-eat product
(RTE).
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L. monocytogenes is a foodborne pathogen com-
monly found in many food-processing and
agricultural environments. It is frequent in
raw foods and can also be present in RTE
foods due to post-processing contamination.
It is not unusual to find L. monocytogenes in
diced bacon, and temperature and pH condi-
tions allow this pathogen to grow. However,
the growth does not seem to be fast (Cornu
et al., 2011). Consumption of L. monocytogenes-
contaminated food may cause listeriosis. The
invasive form of this infection particularly af-
fects pregnant women, the elderly, and people
with diseases such as cancer, diabetes, AIDS,
etc. According to the Center for Disease Con-
trol and Prevention (CDC), L. monocytogenes
is the third pathogen contributing to domesti-
cally acquired foodborne illnesses resulting in
death (CDC, 2011). In France, the incidence is
around 4.5 cases per million inhabitants and
per year (InVS, 2010). For the food industry,
the costs due to L. monocytogenes are mainly
due to batch recalls (Jemmi and Stephan, 2006).
A recall is an action in which the food business
operator (FBO) asks the consumers to return
the products, resulting in costs from the circu-
lation of news and alarm calls, transport and
destruction of the batch.

2.2. Sampling plans in food microbiology

Sampling plans consist of taking a sample com-
posed of n sample units randomly drawn from
a population of food items, usually at the end
of the process. These units are analyzed and
a decision is taken depending on the results.
The food population must be homogeneous so
that the results on the analyzed sample units
give reliable information about the population
from which they are taken. The food popula-
tion is called a batch. Homogeneity of batches
as defined by the FBO does not always occur
in practice, when considering the microbial
distributions of the various pieces of produc-
tion (ICMSF, 2002). Yet in what follows, we
make the assumption of a good match between
microbial batches and production batches as a
simplifying hypothesis.

A very widespread sampling plan is the two-
class attribute sampling plan. In this kind of
plan, the result given by the analysis is binary:
the unit does or does not have a certain prop-

erty (here, the unit may or may not be contam-
inated with L. monocytogenes). The number of
positive sample units y is counted. The two-
class acceptance sampling plan is governed by
two numbers:

• n, the number of sample units taken for
analysis and

• c the maximum allowable number of
sample units with positive results for the
batch to be accepted (i.e. the batch is
accepted if y 6= c).

Of course, it is always possible to reject a good
batch and to accept a poor one. To avoid such
risks of misclassification, the FBO should ana-
lyze every unit of the whole batch, which does
not make sense because the analyzed units
are destroyed during the analysis. Would one
know the prevalence, i.-e. some true level θ
for the probability of contamination for a sam-
pled unit, one could evaluate the probability of
acceptance Pθ(Y ≤ c) of the decision rule. Fig-
ure 1 shows the curve (θ, Pθ(Y ≤ c)) known as
the operating curve. Indeed, two well-chosen
points (θ0, α = Pθ0(Y ≤ c)) and (θ1, 1− β =
Pθ1(Y ≤ c)) are enough to uniquely define the
operating curve. The four quantities θ0, α, θ1, β
are to be interpreted as:

• α is the producer’s risk, also known as
type I error: the chance of rejecting a
good lot that contains defectives equal or
less than a threshold c corresponding to
some acceptable quality level θ0, named
AQL in quality managers’ jargon.

• The type II error or customer’s risk β is
the chance of accepting a bad lot that
contains more defectives than the largest
proportion of defectives θ1, the rejecting
quality level (RQL) that a consumer is
willing to accept.

In theory, θ0, α, θ1, β should be product- and
manufacture-specific. In practice, they also de-
rive from the quest of a compromise between
a small value of n (i.e., small sampling costs)
with high risks of errors and a large value of n
but a low risk of errors.

The sampling plan of the diced bacon plant un-
der study should monitor the production so as
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to make sure that the product is correct for sale.
The diced bacon is sold to a client (here, the re-
tailer), which in turn resells it to consumers. In
this research, the standard two-class attribute
sampling plan cannot be applied because of
the delay between bacteriological controls and
production releases. The FBO takes samples
several times a month but he could hardly re-

ject a month’s production, all the more so as
the products are already in the supermarket or
in the consumers’ stomachs. The FBO analyzes
sampled units but does not know how many
units per sample to take. In this article, we rely
on statistical decision theory to find the most
appropriate value for n.
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Figure 1: A two-class attribute sampling plan is defined by n, the sample size and c, the
maximum allowable number of defective units. Equivalently, the errors of type I and II (resp
α and β) corresponding to the Acceptable Quality Level θ0 and the Rejecting Quality Limit θ1
provide two points that suffice to plot the probability of accepting the lot for any two-class
attribute sampling plan. Such an operating curve is to be compared with the steep one-zero
function corresponding to the ideal filter (bottom panel).

We further define a batch as the period of pro-
duction (e.g. a month) during which a sample
of n units is taken and analyzed. Once this
production period is over and the bacteriolog-
ical controls known, the plant manager takes
a decision with respect to the plant working
conditions, and the client may renegotiate his
contract with the FBO. We take the point of
view of the FBO and make some additional
simplification to depict the retailer’s behavior.

3. Statistical decision theory

Decision theory under uncertainty (Jordaan,
2005) is a branch of Bayesian statistics (Berger,
1985; Kadane, 2011) dealing with decision-
making (here, choosing a sampling plan) un-

der imperfect knowledge and partial informa-
tion. In this section we give the general setting
and some illustration from the two-class sam-
pling plan by attribute.

3.1. General framework with illustration

Statistical decision theory requires the follow-
ing ingredients (Ulmo and Bernier, 1973):

• The definition of the set Θ of all un-
known states of Nature. Here, Θ stands
for the set of all possible values θ for
the “true" microbial level, for instance
a prevalence value or some contamina-
tion concentration, which will remain un-
known throughout the batch production.
It is assumed that some prior knowledge
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is available about the unknown θ under
the form of a probabilistic bet, encoded
by the probability distribution function
[θ]. Following Gelfand and Smith (1990),
we use the bracket notation for pdfs in
what follows. In practice, the prior pdf
[θ] may be obtained through an expert’s
interview as in O’Hagan et al. (2006) or
from some historical records of estima-
tions of θ in similar working conditions
as in Berger (1985). In the acceptance
sampling plan by attribute, θ is defined
as the proportion of defective items in
the lot. A similar definition is taken in
the diced bacon case study (i.e., the preva-
lence). Because the support of θ is the
unit interval, it is most convenient to opt
for a beta distribution with tuning coeffi-
cients a and b to be understood as some
virtual number of a priori successes and
failures:

[θ|a, b] = θa−1(1− θ)b−1 Γ(a + b)
Γ(a)Γ(b)

. (1)

• In a sequential setting, potential actions
are composed of two pieces under the
form (e, d) with e ∈ E being the experi-
mental device to be first selected before
decision d ∈ D is chosen at some termi-
nal stage. Such terminal decision can be
often taken in the light of new informa-
tion, i.e, collected after the experimental
condition e has been set. For instance in
the case of the two-class sampling plan
by attribute, the experimental condition
e can be specified as “a sample of size
n is drawn at random without replace-
ment from the batch”, while the second
component d takes either the value 1 for
“recall” or 0 for “let go”.

• The definition of the set Ye of observable
events under experimental conditions e.
A likelihood function of θ is available un-
der the pdf [y|θ, e] for the event Y = y. In
our case, a typical event will be the ob-
servation y of a random sample Y from
a batch with contamination θ under ex-
periment e (referring to the sample size
n). In the two-class attribute sampling
plan, one typically assumes that y, the
observed number of defects, is sampled
from a sufficiently large production of
items so that a binomial distribution of

order n and probability θ can be taken
for [y|θ, n]:

[y|θ, n] = θy(1− θ)n−y Γ(n + 1)
Γ(y + 1)Γ(n− y + 1)

.

(2)

• The definition of an evaluation criterion,
depending on both the decision made
(i.e. the chosen design plan) and the (un-
known) state of nature. This criterion is
called loss function, noted L, defined on
E × D ×Θ× Y and taking values in R.
Heuristically, this loss function evaluates
the consequence of picking the compos-
ite decision (e, d) while the state of na-
ture is θ and while data y is recorded.
For instance in the acceptance sampling
by attribute, a simple and prototypal loss
function would be independent of the
observed results y under the form:

L(n, d, θ, y) = k× n + Cθ × (1− d) + d
(3)

with k the cost of controlling one item,
C × θ the cost of releasing (d = 0)
a fraction θ of the lot with defective
items, while expressing all costs rela-
tively to the value of the wasted pro-
duction when d = 1 (i.e., the loss that
corresponds to not delivering the goods
is 1). More generally, assuming suffi-
cient regularity conditions so that the
function (e, d) 7→ L(e, d, θ, y) exhibits a
single minimum (e∗(θ, y, d), d∗(θ, y)) for
all (θ, y) ∈ Θ × Y , it is often easier to
work with the opportunity loss:

L(e, d, θ, y)− L(e∗(θ, y, d∗), d∗(θ, y), θ, y).

In more interpretable words, the oppor-
tunity loss function evaluates the cost of
knowing neither θ nor y when deciding
to enforce the composite action (e, d).

The optimal choice according to Bayesian deci-
sion theory is the composite action (ê, d) mini-
mizing the expected loss (or expected oppor-
tunity loss):

(ê, d) = arg min
(e,d)

∫
y

∫
θ

L(e, d, θ, y)[y|θ, e][θ]dydθ.

The decision tree (Raiffa, 1968) of Figure 2 bet-
ter puts forward the sequential nature of the
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previous mathematical setting: decision d is
to be taken once information y has been ob-
served. The role of the statistician might thus
be understood as:

1. Consider an experimental design e, (for
instance in the acceptance sampling plan,
take a given sample size n)

2. Given such experiment e, evaluate the de-
cision rule δ̂e which makes the best map
between the random output Y that will
occur as an observation of experiment e
and the decision to be taken d. When
the sets D and Θ are identical, such a
correspondance is known as an estimator.

δ̂e = arg min
δ

W(e, δ)

W(e, δ) =
∫
y

∫
θ

L(e, δ(y), θ, y)[y|θ, e][θ]dydθ

3. Find (upon eventual requirement) the op-
timal design ê as a solution minimizing

the Bayes risk W(e, δ̂e). For the accep-
tance sampling plan, one finds:

W(n, δ̂n) =
n

∑
y=0

Min(1, C
a + y

n + a + b
)[y]

n̂ = arg min
n

{
k× n + W(n, δ̂n)

}
.

(4)

Note that, since [y|θ, e]× [θ] = [θ|y, e]× [y|e],
once the experimental setting e is picked, the
construction of the optimal decision rule δ̂e
for the Bayesian risk W(e, δ) is a simpler one-
step problem. Given observation y, one simply
seeks the minimum of Bayesian posterior ex-
pected loss. As a consequence, δ̂e is such that:

y 7→ δ̂e(y) = d̂ = arg min
d

∫
θ

L(e, d, θ, y)[θ|y, e]dθ.

Coming back to the acceptance sampling plan
example, conjugate properties of the beta prior
with respect to the binomial likelihood yields
a beta posterior and a Polya predictive:

[θ|y, n, a, b] = θy+a−1(1− θ)n−y+b−1 Γ(n + a + b)
Γ(a + y)Γ(n− y + b)

[y] =
Γ(n + 1)Γ(a + b)Γ(a + y)Γ(b + n− y)

Γ(y + 1)Γ(n− y + 1)Γ(a)Γ(b)Γ(a + b + n)
. (5)

Consequently, δ̂n will in this case be such that:

δ̂n(y) = arg min
d

1∫
θ=0

(Cθ × (1− d) + (d)) [θ|y, n, a, b]dθ

δ̂n(y) = arg min
d

{
(1− d)× C×Ey(θ) + d

}
δ̂n(y) =

1 if y > c
0 if y ≤ c

with, because Ey(θ) =
a+y

a+b+n ,

c = bn + a + b
C

− ac. (6)

Equation (6) offers a coherent interpretation:
the control threshold c decreases with coeffi-
cient a (a small a corresponds to a low prior
level of prevalence). The severity is also re-

inforced for higher values of C i.e., when im-
portant consequences stem from uncontrolled
release of defective items.
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Figure 2: Decision tree for the sequential setting of the optimization program: the stochastic
nodes are indicated by circles while deterministic nodes are squares.

θ

Assumption 3
P(θ>θ1)=10%

Assumption 2
Mode=(a-1)/(a+b-2)

θ1=θ0=0.03

Figure 3: Relying on a beta distribution (with a = 2.15 and b = 38.18) to interpret AQL and RQL.
With such values, Assumptions 2 and 3 are fulfilled.

3.2. A Bayesian reanalysis of the two-class sam-
pling plan

FBOs may have conceptual difficulties inter-
preting type I and II errors so as to set these
errors to meaningful values: indeed, they must
imagine conceptual repetitions of situations
when prevalence θ is known to be either the
AQL θ0 or the RQL θ1, whereas in operational
situations only the data y are given. Therefore
in the spirit of p-values, ad hoc values such as 1,
5 or 10% are often recommended with no deep
understanding of the role of such errors. Con-
sider for instance the sampling plan θ0 = 0.03
for α = 5% and θ1 = 0.1 for β = 10%, which

corresponds to a standard scheme of inspec-
tion by attribute with n = 90 and c = 5.
A Bayesian reanalysis may help to interpret
such a plan. We need five assumptions.

1. As in Figure 3, a beta distribution with
coefficients a and b to be tuned as in
Equation (1) is used to encode a prior
probabilistic judgement on the level of
prevalence θ.

2. The AQL θ0 is interpreted as the mode
of this distribution, i.e., the best guess of
prevalence in a routine operation. θ0 =

a−1
a+b−2 .
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3. The RQL θ1 could be, in light of misin-
terpretations of (frequentist) confidence
intervals pointed out by Lecoutre (2006),
the 90% quantile of this distribution of
(Bayesian) credible values. a = 2.15 and
b = 38.18 met this requirement and the
previous one. One can easily check that
the mode of a beta(2.15, 38.18) distribu-
tion is θ0 = 0.03 and that such a distribu-
tion exceeds the value θ1 = 0.1 with 10%
of its mass.

4. Adopting the loss function given by
Equation (3) and the binomial likelihood,
the sampling threshold derived from a
Bayesian decision analysis is given by
Equation (6). Because of the rounding to
the nearest larger integer, this equation is
verified with C = 17 , to be taken as the
cost linked to unstopped defective items
(indeed, with n = 90 , c = 5, a = 2.15
and b = 38.18, any value of C between
16 and 18 would still be appropriate).

5. The analysis is further developed to find
which sampling cost k would match n =
90 as an optimal solution for Equation (4).
Figure 4 illustrates that k = 1/3000 pro-
vides a rounded quasi-optimum solu-
tion.

  

k=0.5/3000

k=1/3000

k=1.5/3000

Figure 4: Trials and errors when searching
for the sampling cost k that minimizes k ×
n + W(n, δ̂n), where n = 90, and W(90, δ̂90) =

∑90
y=0 min(1, 17 2.15+y

90+2.15+38.18 [y]).

3.3. Going one step further

The previous reanalysis provides an appeal-
ing interpretation of the two class sampling

plan. To sum it up, a decision-maker behaving
according to statistical decision theory would
opt for n = 90 and c = 5 if:

• his prior knowledge about the preva-
lence θ can be expressed by the prob-
abilistic judgement with betting odds
shown by Figure 3,

• when unduly released, defective items
induced losses up to 17 times their own
values,

• the amount of effort necessary to inspect
3000 items would hamper the entire ben-
efits of the whole production.

Most managers met by the authors found the
previous decisional interpretation of the two-
class sampling plan by attribute at least in-
teresting, at best exciting. Despite their long
practice of ISO and ANSI standards and their
knowledge of Codex Alimentarius recommen-
dations, many are more inclined to set their
own specific values to a, b, C and k rather than
answer questions about θ0, θ1, α and β for im-
plementation of sampling rules (ICMSF, 1974,
2002). Is such a hope in statistical decision
theory justified for practical purposes? As de-
picted in what follows, turning to a slightly
more sophisticated three-class sampling plan,
we went from hope to disappointment.

4. How to build an appropriate loss
function?

4.1. First attempt

Often, standard loss functions are chosen, for
example when there is no information avail-
able to build a dedicated function. At the top
rank of the ad hoc loss functions (Berger, 1985),
one finds the unavoidable squared-error loss
and the 0-1 loss. In this work, we choose to
build an appropriate loss function through elic-
itation. We do it in order to measure, on a
monetary scale, the costs that a plant has to
bear. According to statistical decision theory,
one needs to find the values of L for every
couple (state of Nature, decision). Let us first
define the set of possible decisions and the set
of the states of Nature. Because the result of
the analysis the FBO carries out on his product
is binary, the state of Nature of a batch can
be taken to be the prevalence θ. We turned to
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an expert to define the set of decisions. This
expert works in the field of the pork meat in-
dustry. We were not able to find any FBO
willing to take time to answer our questions.
However we kept working on with hope: even
though the expert we had knew less about
the decisions and the costs of a specific plant,
he had nevertheless a broader view of what
happens in the diced bacon industry in France
than a FBO.
According to the expert, a good way to model
all the possible decisions a plant can take is to
define three different decisions:

• d0: contamination is under control, no
correction needed;

• d1: contamination is a little too high, a
slight correction is needed;

• d2: contamination is too high, a big cor-
rection is needed.

To make it simple, we divide the prevalence
accordingly into three classes. The prevalence
is considered:

• low if θ ∈ Θ0 = [0; θ0] ;

• medium if θ ∈ Θ1 =]θ0; θ1] ;

• high if θ ∈ Θ2 =]θ1; 1],

where θ0 < θ1,
⋃2

i=0 Θi = [0; 1] and⋂2
i=0 Θi = ∅. This can be understood as bin-

ning the beta distribution of Equation (1) into
a three-category ordinal variable. With the set
of decisions and the set of states of Nature in
hand, we can now determine losses of L(n, d, θ)
for all the nine cases (here, the experimental
condition e is equal to the size n of the sam-
pling plan). First, for all the cases, the FBO
has to pay for microbiological analyses. One
analysis costs K e . This cost is not mentioned
below in this section to simplify the presenta-
tion. The way we decided to model the costs
a plant faces is represented in Table 1. Each
decision has a cost: 0 for d0, C1 for d1 and
C2 for d2. We made the assumption that the
client knows in which class the prevalence of
the defaults in the production belongs. When
the prevalence θ is not in Θ0 and if the FBO
has taken decision d0, then the client imposes a
fine on the FBO : pb if θ ∈ Θ1 and PB if θ ∈ Θ2
(see Table 1).

Table 1: Values taken by the loss function L
depending on the decision d taken by the plant
and the prevalence θ of the production period.

PPPPPPPPθ
Decisions

d0 d1 d2

θ ∈ Θ0 0 C1 C2
θ ∈ Θ1 pb
θ ∈ Θ2 PB

The expert is asked to define precisely the cor-
rective actions and the fines and to give costs
to all of them.

Slight correction (cost C1) The expert di-
vides this correction into two sub-corrections:

1. a reinforced cleanup during a week;

2. an alert of the suppliers of pork breasts
by carrying out analyses on 20 of their
batches.

The sum of the costs is assessed at C1 =
4, 250 e .

Large correction (cost C2) As for the slight
correction, the expert divides this correction
into two sub-corrections:

1. the plant is closed for 24 h so the FBO
loses a day’s production;

2. the cleanup is more reinforced than for
the slight correction because devices are
taken apart and cleaned.

The total cost is assessed at C2 = 14, 000 e .

Fine if θ ∈ Θ1 If the client detects that the
prevalence of the production is medium and if
the FBO has taken decision d0, then the expert
describes the fine as follows:

1. a penalty because specifications were not
respected;

2. 10 additional analyses on the products
of the FBO.

The total cost is assessed at pb = 4, 200 e .
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Fine if θ ∈ Θ2 If the client detects that the
prevalence of the production is high and if
the FBO has taken decision d0, then the expert
describes the fine as follows:

1. a penalty because specifications were not
respected;

2. a recall of the batch found positive by the
client (for instance, a batch is the produc-
tion of diced bacon done over a day);

3. additional analyses during a month for
each batch (5 sample units per batch);

4. an audit.

The total cost is assessed at PB = 90, 000 e .

How did we fill the last four boxes of Table
1? The costs C1 and C2 remain the same what-
ever the prevalence of the production. On the
contrary, the fines decrease when the FBO has
taken corrections: the bigger the correction,
the smaller the fine because we considered
that, although the prevalence is not low, the
FBO discovered the problem and took correc-
tions. For instance, when the prevalence is
medium and the decision taken by the FBO
is d1, the FBO has to pay the penalty but he
only makes 5 additional analyses instead of
10 so the cost of the fine is 4,100 e . Finally,
the costs are presented on Table 2. The cost
of n microbiological analyses is added to all
9 cases since the FBO samples and analyzes
the production over every period. The cost of
one analysis is denoted K and was assessed at
20 e by the expert (to be added to the costs
mentioned in Table 2).

Table 2: Values of the loss function L (without
the cost af analysis).

PPPPPPPPθ
Decisions

d0 d1 d2

θ ∈ Θ0 0 4,250 14,000
θ ∈ Θ1 4,200 8,350 18,000
θ ∈ Θ2 90,000 93,300 99,000

When looking at Table 2, we notice that the
cheapest decision to take whatever the preva-
lence is decision d0 (i.e. do nothing). In this
situation, there is no need for the FBO to sam-
ple as he does not have to choose between
several decisions.

If the FBO knew the prevalence of his pro-
duction (i.e. if he knew the value of θ), the
optimal decision rule to take would be deci-
sion di when θ ∈ Θi, i = 0, 1, 2, because when
the prevalence is not low, the FBO wants to
take corrective actions to lower the prevalence.
With the costs assessed by the expert, the FBO
has negative opportunity loss (Table 3) that is
to say that a sub-optimal decision is cheaper
than the optimal one!

Table 3: Values of the opportunity loss func-
tion (without the cost of analysis).

PPPPPPPPθ
Decisions

d0 d1 d2

θ ∈ Θ0 0 4,250 14,000
θ ∈ Θ1 -4,150 0 9,650
θ ∈ Θ2 -9,000 -5,750 0

In the assessment made by the expert, the de-
crease in the fines is smaller than the marginal
increase in the decision costs. For example,
when the FBO makes a slight correction in-
stead of doing nothing, the cost increases from
0 to C1 = 4, 250 e . If the prevalence is
medium, the fine only decreases from 4,200
to 4,100 e .
We also explain this unsatisfactory result by
the fact that it was difficult for the expert to
assess the costs because he never thought this
way. In addition, he may be reluctant to con-
sider disastrous situations of contamination.
As we wanted to avoid cases where the sample
size is not trivially determined, we looked for
ways to constrain the opportunity loss to be
positive.

4.2. A more sensible way to build a loss function

Let us keep the first line and the first column
of Table 2 that correspond to situations easy
to think of. We do not consider as reliable
the four remaining left boxes. To maintain co-
herence, we decide the fine would be lowered
by

• 1− α % when the FBO has taken decision
d1 compared to decision d0;

• 1− β % when the FBO has taken decision
d2 compared to decision d0,

with marginal effects such that 0 < β < α (see
Table 4) in order to keep positive opportunity
losses.
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Table 4: Values of the opportunity loss function (without the cost of analysis).

PPPPPPPPθ
Decisions

d0 d1 d2

θ ∈ Θ0 0 4,250 14,000
θ ∈ Θ1 4,200 4, 250 + α 4, 200 14, 000 + β 4, 200
θ ∈ Θ2 90,000 4, 250 + α 90, 000 14, 000 + β 90, 000

As a consequence, when decision d1 has been
taken, the overall cost when prevalence is in Θ1
is lower than when prevalence is in Θ0. How-
ever, 4,200 remain lower than 4,250+α 4,200. To
repair this discrepancy in the initial assessment
of the fine, we corrected the cost of the fine pb
from 4,200 to 6,200 e . This intends to make
sure that the penalty the client charges the FBO
is higher when prevalence is high than when
the prevalence is medium. In agreement with
the expert’s reanalysis, α has been fixed at 0.3
and β at 0.15 so that the optimal decision is
always the cheapest one under perfect informa-
tion about θ. Table 5 describes the final costs of
the loss function, which were approved after
feedback with the expert.

Table 5: Values of the loss function L (the cost
of analysis is not included).

PPPPPPPPθ
Decisions

d0 d1 d2

θ ∈ Θ0 0 4,250 14,000
θ ∈ Θ1 6,200 6,100 14,900
θ ∈ Θ2 90,000 31,300 27,500

5. The best sample size for a three-
way cost table

In order to calculate the Bayesian risk, we need
to determine:

• the prior distribution of prevalence θ;

• the distribution of the observations.

As in Section 3, we chose a Beta distribution
with parameters a and b given by Equation (1)
for the prior of the prevalence. For the distri-
bution of the number of positive observations
y in the sample knowing θ, we kept the bi-
nomial distribution with parameters n and θ

(see Equation (2)). In that case, we recall that
the posterior distribution of θ is also a Beta
distribution: [θ|y] = Be(a + y; b + n− y) and
the marginal distribution of y is straightfor-
ward to calculate (see Equation (5)). To carry
out this study, we merely chose a = 2 and
b = 3 for the prior distribution of θ. With such
a prior, we cautiously assumes a very vague
state of knowledge for some expert, equivalent
to a mind experiment with a = 2 defective
units as outcomes from a virtual sample of
size only a + b = 5. As the FBO does not know
the prevalence, he takes a decision depend-
ing on the value of

∫
L(n, δn(y), θ)[θ|y, n]dθ,

where δn is the decision rule. We added the in-
dex n because the rule depends on the sample
size (decision step previously e in the general
framework given in Section 3). Decision d0 is
taken when∫

L(n, d0, θ)[θ|y, n]dθ ≤
∫

L(n, d1, θ)[θ|y, n]dθ.

In fact, the optimal decision rule is generally
as follows:

δ̂n(y) = d0 ⇔ y ≤ c1

δ̂n(y) = d1 ⇔ c1 < y ≤ c2

δ̂n(y) = d2 ⇔ y > c2,

where c1 and c2 are two thresholds with c1 <
c2. But there are special cases when neither
threshold exists. For instance, if decision d2
is never taken when y increases from 0 to
n, threshold c2 is not defined. The values
of c1 and c2 are determined for each value
of n. Still, we do not mention the depen-
dence in order to simplify notations. If c1
exists, it is the value for which L(n, δ(c1) =
d0, θ) ≤ L(n, δ(c1) = d1, θ) and L(n, δn(c1 +
1) = d0, θ) > L(n, δn(c1 + 1) = d1, θ). Finding
the value of c2 is performed similarly.
Now, we can calculate the Bayesian risk:
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W(n, δn) = Kn +
∫ (∫

L(n, δ̂n(y), θ)[θ|y, n]dθ

)
[y]dy

= Kn +
∫ (

1
δ̂n(y)=d0

(6, 200P1 + 90, 000P2) +
∫

1
δ̂n(y)=d1

(4, 250P0 + 6, 100P1 + 31, 300P2)

+
∫

1
δ̂n(y)=d2

(14, 000P0 + 14, 900P1 + 27, 500P2)

)
[y]dy

= Kn +
c1

∑
y=0

(6, 200P1 + 90, 000P2)P(Y = y) +
c2

∑
y=c1+1

(4, 250P0 + 6, 100P1 + 31, 300P2)P(Y = y)

+
n

∑
y=c2+1

(14, 000P0 + 14, 900P1 + 27, 500P2))P(Y = y), (7)

where Pi = P(θ ∈ Θi|y), i = 0, 1, 2, K is the
cost of a microbiological analysis. Remem-
ber that it was set at 20 eby the expert. In
agreement with him, we set the classes of θ as
follows:

• low prevalence: Θ0=[0;0.2];
• medium prevalence: Θ1=[0.2;0.6];
• high prevalence: Θ2=[0.6;1].

The formula in Equation (7) only depends on
n. It is possible to determine the optimal sam-
ple size n for which the Bayesian risk stands
at the lowest. Figure 5 shows the values of the
Bayesian risk y for different values of n. The
minimum is obtained for n = 16, with c1 = 4
and c2 = 11.
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Figure 5: Different Bayesian risk values
W(n, δn) when n increases from 1 to 50. The
minimum is reached for n = 16, with c1 = 4
and c2 = 11.

6. Discussion

Building an appropriate loss function is not
an easy task. We chose to build a monetary
function so that we can compare different con-
sequences on the same scale: the decisions
taken by the FBO and compliance with the
client specifications.
Of course, the loss function was simplified in
order to be able to obtain it through discussion
with the expert. First, we reduced the number
of decisions to only three and we only kept the
two essential modes of correction that FBOs
are used to. For instance, a slight correction is
always made in a reinforced cleanup during
a week and an alert of the suppliers of pork
breasts to carry out analyses on 20 of their
batches. Yet in operational practice, the FBO
will slightly adjust the correction to the variety
of problems he may encounter. Second, we
divided the prevalence into three categories
(low, medium and high). Had we attempted to
build a function with costs depending on the
prevalence θ in a continuous way, this would
have been a waste of time and an inappropri-
ate approach. The client and the FBO cannot
assess the prevalence precisely and even ex-
perienced experts are not able to consistently
give costs for a large collection of prevalence
values.
How should the elicitation of loss function be
performed? Loss elicitation can be done di-
rectly through experts (Gorton et al., 1997),
through population surveys and inquiries
(Teisl and Roe, 2010) or through specialized
magazines or journals (van der Gaag et al.,
2004). Maybe we should have spent more time
training the expert in probabilistic judgments
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even though he was fully educated in statis-
tics. Works about elicitation by experts can
be found in O’Hagan et al. (2006); Kuhnert
et al. (2010). Here, we only tried to incorporate
his successive feedback into the cost function
within the limited amount of time devoted to
the study.
When figuring out a sampling plan, the brains
of the FBO and of the statistical analyst cer-
tainly do not activate the same neuronal con-
nections. Understandably, FBOs feel more at
ease with a reassuring normative approach
than within a prescriptive perspective. The
FBO makes plans because it is compulsory,
legally speaking (e.g. see Regulation (CE) No
2073/2005 (2005)). Sampling plans can also be
a task set in the stone of the client’s specifica-
tions. To our knowledge, sampling plans have
never been designed to lower the expected
costs borne by the FBO, at least in this food
industry.
In this work, we made the assumption that the
client knows the prevalence of each produc-
tion period. Of course, the client lives in the
very same world of uncertainty as the FBO: he
can only assess the prevalence through micro-
biological testing. Additional modeling of the
client’s uncertainty is not difficult but we do
not present it in this paper because we wanted
here to describe how we built a loss function
keeping things as simple as possible.
Even if the exercise seems difficult, it is worth-
while putting effort into the modeling of a loss
function. As an essential component of the sta-
tistical decision theory ingredients, there are
no ad hoc recipes, every case is specific and
results differ greatly according to which loss
function is considered.

7. Conclusion

This article highlights the following conclud-
ing points:

• conversely to the standard theory of op-
timal design working with general ad hoc
mathematical functions such as Kullback-
Leibler divergence or errors of type I, II,
etc., Bayesian decision theory can con-
sider plant-specific objectives: obviously
the cost function for diced bacon, a rather
ordinary food, will be different from the
cost function for cold smoked salmon,

quickly alterable and mostly consumed
at special events.

• Since monetary costs are an essential con-
cept for decision makers, plant specific
cost functions such as the ones proposed
in equations (3) or (7) are readily under-
standable by FBOs. At the same time,
writing the objective under a quantitative
form favors communication and discus-
sions among the various members of the
often multidisciplinary team in charge
of quality improvement. Additionally,
such formulation may raise questions
that FBOs might not have thought about
otherwise: the first version of the per-
ceived loss function given in Section 4,
Table 3 was definitely not coherent with
the decision process and had to be im-
proved.

• However, the function to optimize for the
diced bacon sampling plan was rather
flat around the minimum. If this situa-
tion is a general feature when searching
for optimum Bayesian decisions in prac-
tice, such a lack of sensitivity may help in
understanding why discussion between
mathematicians and FBOs is bound to
remain long and uneasy.

• The authors cannot deny the many dif-
ficulties encountered when eliciting a
cost function. Nevertheless, for the case
study relying on the coherent improve-
ment detailed in Table 5, we get to a rec-
ommended sampling rule with n = 16,
c1 = 4 and c2 = 11. With regards to
the stakes of the production, this change
from today’s rule (n = 1, c = 0) looks
quite acceptable and even on the more
cautious side.
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