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Two-dimensional sampling in practice

Hélène Juillard
Ined (Institut national d’études démographiques), France

This article explains the principles of the two-stage sampling design and presents the less
known cross-classified sampling design. One purpose of the article is to allow the reader to
differentiate between the two survey designs and put in practice the sampling and estimation
steps. Respective variance estimators for these two designs are calculated in simple cases, and
analogies with one-way and two-way ANOVA are proposed. The comparison is motivated by
the ELFE french survey, and selections and estimations are illustrated using the softwares R,
SAS and Stata.
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1. Introduction

Our population of interest is observed bi-
dimensionally and can be represented by a
rectangular array. In Figure 1, we illustrate the
cross product of a population of rows and of a
population of columns.

Figure 1: Population observed bi-
dimensionally

Sampling in a population observed bi-
dimensionally is discussed in the literature
in different contexts: spatial sampling with the
longitude and the latitude as the dimensions,
as well as plane sampling or sampling in space

and time in Vos (1964). The use of rows and
columns in lattice sampling is presented in Bell-
house (1981) or Ohlsson (1996). Sampling of
outlets and items for the consumer price index
is presented in Dalén and Ohlsson (1995). A
sampling of maternities and days is also used
for the ELFE (Etude Longitudinale Française
depuis l’Enfance) french cohort of infants.

Various sampling designs are possible in a pop-
ulation observed bi-dimensionally. The sample
can be drawn directly with one phase of se-
lection only (as shown in Figure 2), or with
several steps of selections. For example, a stan-
dard two-stage sampling design can be used.
This consists in drawing a sample of primary
units, and then a second stage sample inside
each primary unit independently. Figure 3 il-
lustrates a case where rows are used as primary
units: 4 rows are selected, and 3 columns are
then drawn inside each selected row.

http://www.csbigs.fr
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Figure 2: Direct sampling in a population ob-
served bi-dimensionally
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Figure 3: Two-stage sampling in a population
observed bi-dimensionally with rows as pri-
mary units

A cross-classified sampling design (CCS) can
also be used, which proceeds as follows: two
samples are drawn independently, and then
crossed. In Figure 4, a sample of 4 rows and a
sample of 3 columns are selected, which results
in a final sample of 12 units row × column.
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Figure 4: Cross-classified sampling

For the two-stage and the cross-classified de-
signs, we distinguish two steps of sampling:
one on rows and one on columns. Nevertheless,
the CCS design can not be regarded as a classic
two-stage design. A classic two-stage design
requires two assumptions: independence be-
tween the drawings made at each stage, also
called the invariance property (Särndal et al.,
1992); independence between the various draw-
ings at the second stage, conditionally on the

first stage sample. For a CCS design, the in-
variance property is verified (independence
between the sample of rows and the sample
of columns), but the independence property
is not (a same sample of columns is used for
each row).

If the two-stage sampling design is well known,
the CCS design presents a limited literature,
recently completed by Skinner (2015) and Juil-
lard et al. (2016). In practice, it is specifically
used in the Consumer Price Index designs in
different countries like the United States (Wilk-
erson, 1957) and Sweden (Dalén and Ohlsson,
1995). One purpose of this article is to allow
the reader to differentiate between these two
sampling designs, and to put in practice the
sampling and estimation steps. In practice,
softwares like R, SAS or Stata propose sam-
pling and estimation procedures for two-stage
sampling, but to the best of our knowledge
there is no such offer for the CCS design. This
case study aims at illustrating the error com-
mitted by users, when treating the CCS design
as a two-stage sampling design for variance
computation and variance estimation. A R
program which enables to perform variance
estimation for a CCS design is available as
supplementary material.

The comparison between two-stage sampling
and CCS is motivated by the ELFE survey pre-
sented in Section 2 with the data used for this
case study. For these two designs, the total
and ratio parameters are studied and corre-
sponding variances as well as variance estima-
tors are computed in a simple case. Analogies
with one-way and two-way ANOVA are pro-
posed, which enables to interpret the variance
formulas in terms of column effect or row ef-
fect. In Section 3, we focus on the two-stage
sampling design and in Section 4, we focus
on the CCS design. We will compare the soft-
wares advantages (R, SAS, Stata) in terms of
selection procedures and variance estimation
when estimating totals and ratios. The various
estimators will be progressively illustrated in
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this article. A comparison between the differ-
ent methods of estimation for the two designs
through simulations is proposed in Section 5.

2. ELFE survey, data and softwares

The ELFE1 french cohort consists of more than
18,000 children whose parents consented to
their inclusion. In each of the 320 selected ma-
ternity units, targeted babies born during 25
days (during four specific periods representing
each of the four seasons) in 2011 were selected.
In the ELFE survey, spatial (metropolitan
France) and temporal (year 2011) variabili-
ties was sought. In practice, logistical and
administrative reasons oriented the sample
design: a direct sampling (as illustrated in
Figure 2) or a two-stage sampling design (as
illustrated in Figure 3) could not be used. A
CCS was implemented, crossing independently
a sample of maternities and a sample of days.
Stratified simple random sampling was used
for the two populations, but in our study, we
will consider a simple random sampling for
the two designs. Owing to its two selection
steps, the CCS design may be considered by
data users as a two-stage sampling design,
leading to erroneous variance estimation. This
article aims at differentiating these two sam-
pling designs, and at quantifying the bias in
variance induced by such approximation of the
survey design.

The dataset delivered with this article repre-
sents the ELFE population with NM = 544 ma-
ternities in the population UM and ND = 365
days in the population UD in 2011. Given the
confidentiality issues, the interest variables
in the dataset are count variables simulated
taking into account different maternity and
day effects. So as to mimic the variables in
the ELFE survey, we consider the Number of
infants with a mother followed by a midwife for
the variable Yik and the Number of infants born
by caesarean for Zik where i denotes the index
for the maternity and k the index for the day.
In this article, we will focus on the estimation

of total and ratio parameters and the variable
Xik in the dataset, that will be used as the
denominator for the ratio, can be considered
as the Number of births. The construction of
this count variables is detailed in Appendix 6.1.

The code is provided in order to replicate all
results obtained in this article. Three softwares
are used and compared: R 3.2.2 (R Core Team,
2015), SAS 9.4 (SAS Institute Inc., 2015), Stata
13.1 (StataCorp., 2013). R is available from
Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/.

3. Two-stage sampling: selection
and estimation

We begin by describing the basic principles
of two-stage sampling. Assume that we
are interested in some population UM =
{u1, . . . , ui, . . . , uNM} of non-overlapping Pri-
mary Sampling Units (PSUs), where each PSU
ui is itself a population of Secondary Sampling
Units (SSUs) of size Ni. A sample SM of size
nM is selected in UM by means of some sam-
pling design pM(·). Inside each ui ∈ SM, a sec-
ond stage sample Si of size ni is then selected
according to some sampling design piD(·|SM).
The final sample of SSUs is S =

⋃
ui∈SM

Si.

A two-stage sampling design is usually re-
quired to match the following assumptions:

H1 Invariance: the design piD(·|SM) used in
the second stage for a PSU ui does not
depend on the first-stage sample SM se-
lected, that is

∀ui ∈ UM, piD (.|SM) = piD (.) .

H2 Independence: conditionally on SM, the
sub-sampling inside the selected PSUs is
independent from one PSU to another.
That is,

Pr

 ⋃
ui∈SM

Si|SM

 = ∏
ui∈SM

Pr (Si|SM) .

1http://www.elfe-france.fr/index.php/en/

http://CRAN.R-project.org/
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3.1. Selecting a two-stage sample

In this part, the possibilities to draw two-stage
samples using the softwares R, SAS and Stata
are scanned. In our case study, a SI (simple
random) sampling is drawn in UM and the SI
sampling is also used in each ui ∈ UM (which
we denote {SI,SI}); in order to mimic the ELFE
sample size, the same number nD = 25 of SSUs
is drawn inside each of the nM = 320 selected
PSUs.

R implementation The function mstage of the
sampling package (Tillé and Matei, 2015) in R
can be used to select a two-stage sample in
a single step (see the frame Code 1). With
the argument stage, four methods of selection
can be used but it has to be the same for the
two stages: simple random sampling without
replacement or with replacement, Poisson sam-
pling or systematic sampling. The option pik
has to be applied in the case of unequal prob-
abilities of selection. The argument size used
indicates the sample size of PSUs, and the vec-
tor of sample sizes of SSUs.

l i b r a r y ( sampling )
tableR=read . csv2 ( " . . . / Data2stCCS . csv " )
n_m=320; n_d =25; N_m=544; N_d=365; N=N_m∗N_d

m=mstage ( tableR , s tage= l i s t ( " c l u s t e r " , " c l u s t e r " ) ,
varnames= l i s t ( " ID_i " , " ID_k " ) , s i z e = l i s t (n_m, c
( rep ( n_d , n_m) ) ) , method=c ( " srswor " , " srswor " )
)

ech=getdata ( tableR ,m) [ [ 2 ] ]

Code 1: An R code to select a two-stage sample
in a population observed bi-dimensionally

SAS implementation The SAS software pro-
poses to call two procedures SURVEYSELECT
as proposed in the frame Code 2. In order to
identify the PSUs, the first procedure uses the
cluster statement and the second the strata state-
ment. The strata statement can also be applied
at both stages and a lot of different methods
of selection are available (simple random sam-
pling with or without replacement, Bernoulli
sampling, sampling with probabilities propor-
tional to size, with sequential or systematic
selection, . . . ).

proc import d a t a f i l e = " . . . / Data2stCCS . csv "
out=pop dbms=csv r e p l a c e ; DELIMITER = " ; " ; run ;

proc SURVEYSELECT data=pop method= s r s n=320 seed
=1357 out=ech1 ;

c l u s t e r ID_i ;
run ;

proc SURVEYSELECT data=ech1 method= s r s n=25 seed
=7548 out=ech ;

s t r a t a ID_i ;
run ;

Code 2: A SAS code to select a two-
stage sample in a population observed bi-
dimensionally

Stata implementation The software Stata
proposes the command sample (bsample, re-
spectively) to draw a random sample without
replacement (with replacement, respectively).
The command sample can be used with the op-
tion by followed by the name of the stratum.
In this case the same number or the same per-
centage of units is drawn inside each stratum.
In the frame Code 3, a table ’ech1’ containing
only one row by PSU is created and a first SI
sample of size 320 is selected. The command
merge enables to create the sampling base for
the second step of selection. A SI sample of 25
units is drawn in each selected PSU using by
id_i: sample 25, count.

. c l e a r

. i n s h e e t using / . . . / Data2stCCS . csv , d e l i m i t e r ( ; )

. save POP, r e p l a c e

. c o n t r a c t i d _ i

. sample 320 , count

. s o r t i d _ i

. keep i d _ i

. save / . . . / ech1 . dta , r e p l a c e

. c l e a r

. use POP

. s o r t i d _ i

. merge m: 1 i d _ i using / . . . / ech1 . dta

. drop i f _merge != 3

. s o r t i d _ i

. by i d _ i : sample 25 , count

. count

Code 3: A Stata code to select a two-
stage sample in a population observed bi-
dimensionally

The same steps as in Stata could also be used
with R and SAS. This would enable to make
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use at any one-stage sampling procedure avail-
able in each software.

3.2. Estimating a total

We consider a study variable Y taking the value
Yik for the PSU ui and the SSU k. We are inter-
ested in estimating the total

tY = ∑
ui∈UM

∑
k∈ui

Yik.

In the particular case of SI sampling in UM and
SI sampling inside each ui ∈ SM, the expansion
estimator

t̂Y =
NM
nM

∑
ui∈SM

Ni
ni

∑
k∈Si

Yik

is unbiased for tY (Särndal et al., 1992).

3.3. Calculating the variance

Under the invariance and the independence
assumptions, the variance of t̂Y is obtained by
conditioning on the first stage sample SM. This
leads to

V2d
(
t̂Y
)

= VPSU
(
t̂Y
)
+ VSSU

(
t̂Y
)

.

In case of {SI,SI}, we obtain

VPSU
(
t̂Y
)
= N2

M

(
1

nM
− 1

NM

)
S2

Y◦• , (1)

VSSU
(
t̂Y
)
=

NM
nM

∑
ui∈UM

N2
i

(
1
ni
− 1

Ni

)
S2

Yi◦
, (2)

with

S2
Y◦• =

1
NM − 1 ∑

ui∈UM

Yi• −
1

NM
∑

uj∈UM

Yj•

2

,

S2
Yi◦

=
1

Ni − 1 ∑
k∈ui

(
Yik −

1
Ni

∑
l∈ui

Yil

)2

.

In the particular case where two-stage sam-
pling is used inside a product population
UM × UD (as illustrated in Figure 3), all the
PSUs ui (with associated size Ni) in the above
formulas can be replaced by a same notation

UD (with associated size ND) for all i ∈ UM. In
this case, if the same number of SSUs is drawn
inside each selected PSU, we may note ni = nD
for any i ∈ SM.

An analogy can be made between the two-
stage variance decomposition and the analysis
of variance (ANOVA) which uses the parti-
tioning of sums of squared deviations. For
one-way ANOVA, the total sum of squares
SST = ∑ui∈UM ∑k∈ui

(Yik − Ȳ••)
2 may be writ-

ten as

SST = SSM + SSE

where SSM is the explained sum of squares
(a.k.a. the sum of squares between classes) and
SSE denotes the residual sum of squares (a.k.a.
sum of squares within classes), see Appendix
6.3 for details. For example, in our case study,
the variable Number of infants born by caesarean
(Zik) presents a smaller SSM than the variable
Number of births (Xik).

We consider the {SI,SI} sampling case, and as-
sume for simplicity that all the PSUs are of the
same size Ni = ND, and that the same sample
size ni = nD is used inside each selected PSU.
In this case, we have

SSM =
NM − 1

ND
S2

Y◦• ,

SSE = (ND − 1) ∑
ui∈UM

S2
Yi◦

.

The variance in (1) due to the selection of PSUs
may be rewritten as

VPSU
(
t̂Y
)
= N2

M

(
1

nM
− 1

NM

)
ND

NM − 1
SSM,

and depends on the explained sum of squares
SSM. The variable Xik will present a more
important part of first-stage variance than the
variable Zik. The variance in (2) due to the
selection of SSUs may be rewritten as

VSSU
(
t̂Y
)
=

NM
nM

N2
D

(
1

nD
− 1

ND

)
1

ND − 1
SSE

and depends on the residual sum of squares
SSE.
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3.4. Estimating the variance

An unbiased variance estimator of t̂Y can be
written as

V̂2d
(
t̂Y
)

= V̂2d,a
(
t̂Y
)
+ V̂2d,b

(
t̂Y
)

(3)

where

V̂2d,a
(
t̂Y
)
= N2

M

(
1

nM
− 1

NM

)
s2

Ŷ◦•
, (4)

V̂2d,b
(
t̂Y
)
=

NM
nM

∑
ui∈SM

N2
i

(
1
ni
− 1

Ni

)
s2

Yi◦
, (5)

with

s2
Ŷ◦•

=
1

nM − 1 ∑
ui∈SM

Ŷi• −
1

nM
∑

uj∈SM

Ŷj•

2

,

s2
Yi◦

=
1

ni − 1 ∑
k∈Si

(
Yik −

1
ni

∑
l∈Si

Yil

)2

,

and where

Ŷi• = ∑
k∈Si

Ni
ni

Yik

denotes the Horvitz-Thompson estimator of
the sub-total Yi. For an estimation term by
term of the variance in formula (1), see the
Appendix 6.2.

Using the same one-way ANOVA as in the
previous section but calculated on the sample
sM × sD, the total sum of squares ssT may be
written as

ssT = ssM + ssE

where each term is defined in Appendix 6.3.
The first part of the variance estimator in (4)
can be rewritten as

V̂2d,a
(
t̂Y
)
= N2

M

(
1

nM
− 1

NM

)
nD

nM − 1
ssM,

and depends on the explained sum of squares
ssM. The second part in (5) can be rewritten as

V̂2d,b
(
t̂Y
)
=

NM
nM

N2
D

(
1

nD
− 1

ND

)
1

nD − 1
ssE

and depends on the explained sum of squares
ssE. Note that the term V̂2d,a

(
t̂Y
)

is occasion-
ally considered as a simplified variance estima-
tor of V̂2d

(
t̂Y
)
. The underestimation is seen as

negligible when the first-stage inclusion proba-
bilities nM/NM are small (Särndal et al., 1992).

3.5. Estimation in practice

In this Section, we propose to study the es-
timation of a more complex parameter using
different procedures from the R, SAS or Stata
softwares. A ratio R = tY/tX can be easily
estimated by R̂ = t̂Y/t̂X using a plug-in prin-
ciple. To estimate the variance, a linearization
method can be used (Deville, 1999). The esti-
mated linearized variable is then plugged into
the formula (3).
From a particular selected sample (using vari-
able Dummy_2d in the dataset, which takes the
value 1 if the unit is selected in the {SI,SI} sam-
ple and 0 otherwise), the estimated ratios t̂Y/
t̂X and t̂Z/t̂X and their estimated variance V̂2d
can be calculated together with the approxima-
tion V̂2d,a.

R implementation The functions svydesign
and twophase of the R package survey (Lumley,
2014) can be used to describe the two-stage
sample. Only the first one is illustrated in the
frame Code 4. Note that other packages are
available to estimate the sampling variance. In
the argument id, the vector of PSU IDs has to be
entered, followed by the vector of SSU IDs. The
argument fpc can be specified as the PSU popu-
lation size NM in the form of a vector, followed
by the vector of the SSU populations size ND.
The appropriate set of weights can be set using
the argument weights. Note that it is possible to
take into account the stratified sampling by us-
ing the argument strata. The function svyratio
estimates the ratio and its associated standard
error. The command SE(yxratio)ˆ 2 displays the
estimated variance V̂2d

(
R̂
)
.

> tableR=read . csv2 ( " . . . / Data2stCCS . csv " )
> ech=tableR [ tableR $Dummy_2d==1 ,]
> a t t a c h ( ech )
> l i b r a r y ( survey )
> n_m=320; n_d =25; N_m=544; N_d=365
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> infoplan <−svydesign ( id=~ID_i+ID_k , fpc=~N_M+N_D
, weights =(N_m∗N_d) /(n_m∗n_d ) , data=ech )

> ( y x r a t i o <− s v y r a t i o (~ Yik+Zik ,~ Xik , in foplan ) )

Rat io es t imator : s v y r a t i o . survey . design2 (~ Yik +
Zik , ~Xik , in foplan )

Rat ios=
Xik

Yik 0 .1507968
Zik 0 .1510090

SEs=
Xik

Yik 0.0008873011
Zik 0.0009162289

> SE ( y x r a t i o ) ^2

Yik/Xik Zik/Xik
7 .873033 e−07 8 .394754 e−07

> c o n f i n t ( y x r a t i o )
# c o n f i n t ( yxrat io , l e v e l = 0 . 9 0 )

2 . 5 % 9 7 . 5 %
Yik/Xik 0 .1490577 0 .1525359
Zik/Xik 0 .1492132 0 .1528047

Code 4: R code and results when estimating
the ratio and its variance V̂2d

(
R̂
)

The command vcov(yxratio) permits also to dis-
play the estimated variance. The function svy-
total( ∼ Xik + Yik + Zik , infoplan) can be used
to estimate the totals t̂X, t̂Y and t̂Z while the
function svymean( ∼ Xik + Yik + Zik , infoplan)
can be used to estimate the respective means of
Xik, Yik and Zik. By default the function confint
produces a confidence interval of level 0.95 and
it can be changed using the option level.
Note that V̂2d,a

(
R̂
)

can also be calculated with
R, with a simple modification of the previous
procedures (see frame Code 5).
> infoplan <−svydesign ( id=~ID_i , fpc=~N_M, weights

=(N_m∗N_d) /(n_m∗n_d ) , data=ech )
> y x r a t i o <− s v y r a t i o (~ Yik+Zik ,~ Xik , in foplan )
> SE ( y x r a t i o ) ^2

Yik/Xik Zik/Xik
3 .377375 e−07 3 .732472 e−07

> c o n f i n t ( y x r a t i o )

2 . 5 % 9 7 . 5 %
Yik/Xik 0 .1496578 0 .1519359
Zik/Xik 0 .1498116 0 .1522064

Code 5: R code and results when estimating
the ratio and its part of variance V̂2d,a

(
R̂
)

SAS implementation The procedure SUR-
VEYMEANS is used in the frame Code 6 with

the argument cluster to indicate the PSU IDs,
and weight for the set of weights wik. The
option strata is available. This procedure calcu-
lates R̂ and only the first part V̂2d,a

(
R̂
)

of the
estimated variance V̂2d

(
R̂Y
)
.

proc IMPORT d a t a f i l e = " . . . / Data2stCCS . csv "
out = ech ( where= (Dummy_2d=1) )
dbms = csv
r e p l a c e ;
DELIMITER = " ; " ;
run ;

data ech ; s e t ech ; wik =(544∗365) /(320∗25) ; run ;

proc SURVEYMEANS data=ech t o t a l =544 mean sum var
varsum missing clm /∗ alpha =0.10 ∗/;

CLUSTER ID_i ;
/∗ VAR Xik Yik Zik ; ∗/
RATIO Yik Zik / Xik ;
WEIGHT wik ;
run ;

Rat io Analysis
Numerator Denominator Rat io Std Err Var 95% CL

f o r Rat io
Yik Xik 0 .150797 0 .000581 0 .000000338 0 .149653

0 .151940
Zik Xik 0 .151009 0 .000611 0 .000000373 0 .149807

0 .152211

Code 6: SAS code and results when estimating
the ratio and its part of variance V̂2d,a

(
R̂
)

The default alpha option is 0.05. The line of
code VAR Xik Yik Zik ; can be used to estimate
the totals t̂X , t̂Y and t̂Z using results of options
sum and varsum. The same command is used to
estimate the means with options mean and var.
Note that the second term of V̂2d

(
R̂
)

can be
calculated using a supplementary step (Aragon
and Ruiz-Gazen, 2004).

Stata implementation The command svyset
of Stata in the frame Code 7 is used to describe
the two-stage sample. In the first place id_i
stands for the PSU IDs, followed by the vector
of weights wik which in this application equals
(NmND)/(nMnD). The argument fcp takes into
account the PSU population size. After the two
vertical bars, the second stage is defined in the
same way. The command svy : ratio calculates
the estimated ratio R̂ and its associated stan-
dard error which corresponds to the square
root of V̂2d

(
R̂
)
.

. c l e a r

. i n s h e e t using / . . . / Data2stCCS . csv , d e l i m i t e r ( ; )
(14 vars , 198560 obs )
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. save POP, r e p l a c e

. keep i f dummy_2d==1

. gen wik =(544∗365) /(25∗320)

. svyset i d _ i [ pweight=wik ] , fpc (n_m) || id_k ,
fpc ( n_d )

pweight : wik
VCE: l i n e a r i z e d

S in g le uni t : missing
S t r a t a 1 : <one>

SU 1 : i d _ i
FPC 1 : n_m

S t r a t a 2 : <one>
SU 2 : id_k

FPC 2 : n_d

. svy : r a t i o ( yik/xik ) ( z ik/xik )
∗ svy : r a t i o ( yik/xik ) ( z ik/xik ) , l e v e l ( 9 0 ) ;
( running r a t i o on es t imat ion sample )

Survey : Rat io es t imat ion

Number of s t r a t a = 1 Number of obs = 8000
Number of PSUs = 320 Population s i z e = 198560

Design df = 319

_ r a t i o _ 1 : yik/xik
_ r a t i o _ 2 : z ik/xik

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| Linear ized
| Rat io Std . Err . [97.5% Conf . I n t e r v a l ]

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
_ r a t i o _ 1 | .1507968 .0008873 .1490511 .1525425
_ r a t i o _ 2 | .151009 .0009162 .1492064 .1528116
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Code 7: Stata code and results when estimating
the ratio and its variance V̂2d

(
R̂
)

To estimate t̂X, t̂Y and t̂Z, the command svy :
total xik yik zik can be used. So as to estimate
means, we may use the command svy : mean
xik yik zik. The default level option for the con-
fidence interval is 95 %.
Note that the variance estimator V̂2d,a

(
R̂
)

can
also be obtained with Stata in the frame Code 8.

. svyset i d _ i [ pweight=wik ] , fpc (n_m)

. svy : r a t i o ( yik/xik ) ( z ik/xik )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| Linear ized
| Rat io Std . Err . [97.5% Conf . I n t e r v a l ]

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
_ r a t i o _ 1 | .1507968 .0005812 .1496534 .1519402
_ r a t i o _ 2 | .151009 .0006109 .149807 .152211
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Code 8: Stata code and results when estimating
the ratio and its part of variance V̂2d,a

(
R̂
)

4. Cross-classified sampling: selec-
tion and estimation

We now consider the cross-classified sampling
design. We consider a sampling design pM in
UM, leading to a sample SM of size nM. We
consider a sampling design pD in UD, leading
to a sample SD of size nD. We assume that the
two designs pM(·) and pD(·) are independent.
This enables to define a sampling design p(·)
on the product population U = UM ×UD as

p(s) = pM(sM)× pD(sD)

for any s = sM × sD ⊂ UM ×UD.

The assumption of independence for a cross-
classified sampling design is equivalent to the
standard assumption H1 of invariance between
two successive drawings in a two-stage sam-
pling design.

4.1. Selecting a cross-classified sample

There is no standard procedure to perform CCS
in one step, but all possible one-stage sampling
procedures can be used to select SM and SD
independently. The samples are then crossed
to obtain the final sample SM × SD. In our case
study, we are interesting in the crossing of a
SI sample of size nM = 320 drawn in UM, and
of a SI sample of size nD drawn in UD. Such
design will be denoted as SI × SI.

R implementation A selection of a SI × SI
sample with the software R is presented in the
frame Code 9.
> tableR=read . csv2 ( " . . . / Data2stCCS . csv " )
> n_m=320; n_d =25; N_m=544; N_d=365
>
> s_m=sample ( 1 :N_m, n_m) ; s_d=sample ( 1 : N_d, n_d )

> Dummy_CCS2 <− rep ( 0 ,N) ; Dummy_CCS2[ which (
tableR $ ID_i %in% s_m & tableR$ID_k %in% s_d )
] <−1

> echCCS=tableR [Dummy_CCS2==1 , ]

Code 9: An R code to select the CCS sample

SAS implementation With SAS, the proce-
dures SURVEYSELECT and merge can be used
to select and cross the two samples (frame
Code 10).
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proc IMPORT d a t a f i l e = " . . . / Data2stCCS . csv "
out=pop dbms=csv r e p l a c e ; DELIMITER = " ; " ; run ;

proc f r e q data=pop ; t a b l e s ID_i/out=popM; run ;
proc SURVEYSELECT data=popM method= s r s n=320

seed =2289 s t a t s out=echM ;
run ;
proc f r e q data=pop ; t a b l e s ID_k/out=popD ; run ;
proc SURVEYSELECT data=popD method= s r s n=25 seed

=2368 s t a t s out=echD ;
run ;

proc s o r t data=pop ; by ID_i ; run ;
proc s o r t data=echM ; by ID_i ; run ;
data echA ; merge echM ( in=A) pop ; by ID_i ; i f A;
run ;
proc s o r t data=echA ; by ID_k ; run ;
proc s o r t data=echD ; by ID_k ; run ;
data ech ; merge echD ( in=A) echA ; by ID_k ; i f A;
/∗Dummy_CCS2=1;∗/
run ;

Code 10: A SAS code to select the CCS sample

Stata implementation Following the same
logic, the commands sample and merge may
be used with the Stata software, as illustrated
in the frame Code 11.
. c l e a r
. i n s h e e t using / . . . / Data2stCCS . csv , d e l i m i t e r ( ; )
. save POP, r e p l a c e
. c o n t r a c t i d _ i
. sample 320 , count
. s o r t i d _ i
. keep i d _ i
. save echM , r e p l a c e

. c l e a r

. use POP

. c o n t r a c t id_k

. sample 25 , count

. s o r t id_k

. keep id_k

. save echD , r e p l a c e

. c l e a r

. use POP

. s o r t i d _ i

. merge m: 1 i d _ i using echM . dta

. drop i f _merge != 3

. drop _merge

. s o r t id_k

. merge m: 1 id_k using echD . dta

. drop i f _merge != 3

∗ gen Dummy_CCS2=1;

Code 11: A Stata code to select the CCS sample

4.2. Estimating a total

In the particular case of SI × SI, the total

tY = ∑
i∈UM

∑
k∈UD

Yik

is unbiasedly estimated by the expansion esti-
mator

t̂Y = ∑
i∈SM

∑
k∈SD

NM ND
nMnD

Yik,

see Juillard et al. (2016) for details.

4.3. Calculating the variance

In this Section, the variance of t̂Y is calculated
in the SI× SI case. The analogy between the de-
composition of the SI × SI variance and the de-
composition of a two-way ANOVA was noted
in Ohlsson (1996), and is described here. For a
two-way ANOVA without replication, the total
sum of squares may be written as

SST = SSM + SSD + SSE (6)

where the terms SSD, SSM and SSE represent
respectively the sum of squares explained by
the factor D, the one explained by the factor M
and the residual sum of squares. The details
are given in Appendix 6.4. In our case study,
the variable Number of infants born by caesarean
presents a large SSD, since caesarean sections
are operations which are rarely scheduled dur-
ing a week-end. On the other hand, the SSD is
small for the variable Number of infants with a
mother followed by a midwife. Using the different
terms of this ANOVA, the variance of t̂Y can
be rewritten as

VCCS
(
t̂Y
)
= V1

(
t̂Y
)
+ V2

(
t̂Y
)
+ V3

(
t̂Y
)

(7)

where

V1
(
t̂Y
)

=

(
1

nD
− 1

ND

)
N2

D NM

ND − 1
SSD

V2
(
t̂Y
)

=

(
1

nM
− 1

NM

)
N2

M ND

NM − 1
SSM

V3
(
t̂Y
)

=

(
1

nD
− 1

ND

)(
1

nM
− 1

NM

)
N2

D
ND − 1

N2
M

NM − 1
SSE.

We note that the CCS variance is divided into
three terms associated respectively to a mater-
nity effect, a day effect and a residual effect.
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On the other hand, the two-stage variance was
divided into two terms associated to a mater-
nity effect and to a residual effect. The term
SSM is the same in both decompositions, but
the term SSE is obviously different.

4.4. Estimating the variance

A term by term unbiased estimator of the vari-
ance of t̂Y in formula (7) is presented in Ap-
pendix 6.5. This variance estimator simplifies
as

V̂CCS
(
t̂Y
)
= V̂D

(
t̂Y
)
+ V̂M

(
t̂Y
)
− V̂E

(
t̂Y
)

(8)

where

V̂D
(
t̂Y
)

=

(
1

nD
− 1

ND

)
N2

D
nD − 1

N2
M

nM
ssD,

V̂M
(
t̂Y
)

=

(
1

nM
− 1

NM

)
N2

M
nM − 1

N2
D

nD
ssM,

V̂E
(
t̂Y
)

=

(
1

nM
− 1

NM

)(
1

nD
− 1

ND

)
N2

M N2
D

(nM − 1)(nD − 1)
ssE,

where the terms come from an ANOVA de-
composition on the sample sM × sD as detailed
in Appendix 6.4. The variance estimator is
divided into three terms: V̂D

(
t̂Y
)

which rep-
resents an inter-day effect, V̂M

(
t̂Y
)

which rep-
resents an inter-maternity effect, and V̂E

(
t̂Y
)

which represents a residual effect.

4.5. Estimation in practice

To the best of our knowledge, there are no
direct procedures in the softwares R, SAS and
Stata to calculate CCS variance estimates. In
this paper, we develop R functions to estimate a
total and a ratio along with variance estimators.
More precisely, from a selected sample (using
variable Dummy_CCS in the dataset, which
takes the value 1 if the unit is selected in the
SI × SI sample and 0 otherwise), the estimated
total t̂X and its estimated variance can be cal-
culated using the R functions EstTccsSISI and
EstVARTccsSISI proposed in the supplementary
material. In the frame Code 12, these functions

require that you enter the cross-classified sam-
ple (matrix of size nD × nM), the sample sizes
nM and nD and the population sizes NM and
ND.

> echCCS=tableR [ tableR $Dummy_CCS= = 1 , ] ; a t t a c h (
echCCS )

> n_m=320; n_d =25; N_m=544; N_d=365
> echXCCS=matrix ( Xik , nrow=n_d )
> E s t T c c s S I S I (ECH=echXCCS , n_m, n_d ,N_m, N_d)

[ 1 ] 3981426

> EstVARTccsSISI (ECH=echXCCS , n_m, n_d ,N_m, N_d)

[ 1 ] 307219631

Code 12: R code and results when estimating
the total and its variance V̂CCS

(
t̂Y
)

To estimate the ratio tY/tX , the function EstR-
ccsSISI can be used. The linearized variable
for the ratio estimator is then calculated by
LinearizedR, and is plugged in the function Est-
VARTccsSISI as illustrated in the frame Code 13.

> echYCCS=matrix ( Yik , nrow=n_d )
> E s t R c c s S I S I (ECHY=echYCCS ,ECHX=echXCCS , n_m, n_d ,

N_m, N_d)

[ 1 ] 0 .1495898

> LinR=LinearizedR (ECHY=echYCCS ,ECHX=echXCCS , n_m
, n_d ,N_m, N_d)

> EstVARTccsSISI (ECH=LinR , n_m, n_d ,N_m, N_d)

[ 1 ] 1 .006684 e−06

Code 13: R code and results when estimating
ratio and its variance V̂CCS

(
R̂Y
)

5. Illustration

A small simulation study is conducted to com-
pare the performance of several variance es-
timators under a two-stage sampling design
and under a CCS design. We also evaluate
the performance of various variance estimators.
For a two-stage sampling design where the pri-
mary units are the maternities and where the
number of secondary units nD is the same in-
side all the primary units, we calculated the
unbiased variance estimator V̂2d as well its first
part V̂2d,a. For the CCS design, the unbiased
variance estimator V̂CCS is calculated as well
as V̂2d and we also calculate the first part V̂2d,a
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of V̂2d in order to examine the error due to
using the two-stage variance estimator instead
of the cross-classified variance estimator. The
two sampling designs and the various variance
estimators are summarized in Table 1.

Table 1: Variance estimators of two-stage sam-
pling and CCS

SAMPLING DESIGN
two-stage cross-classified

UNBIASED VARIANCE ESTIMATOR
V̂2d in (3) V̂CCS in (8)

APPROXIMATION
V̂2d,a in (4) V̂2d in (3)

V̂2d,a in (4)

For the two-stage sampling design, the {SI,SI}
sampling is used: a sample SM of nM materni-
ties is selected and in each selected maternity,
a sample sD of size nD is selected. For the CCS
design, the SI × SI sampling is used: a sample
SD of nD days, and a sample SM of nM mater-
nities are selected. We used various sample
sizes are used, namely nM or nD equal to 5, 25
and 320 (the two last sizes corresponding to the
true ELFE sample sizes). These two sample se-
lections were respectively repeated B = 10, 000
times. For CCS and for two-stage sampling,
and in each of the b = 1, . . . , B samples, the
estimator R̂(b) of the ratio R = tY/tX is com-
puted. Also, for each cross-classified sample,
the unbiased variance estimator V̂(b)

CCS and the

simplified variance estimators V̂(b)
2d , V̂(b)

2d,a are
computed, and for each two-stage sample, the
unbiased variance estimator V̂(b)

2d and the sim-

plified variance estimator V̂(b)
2d,a are computed.

For each variance estimator V̂, the Monte Carlo
Percent Relative Bias (RB), given by

RBmc(V̂) = 100× B−1 ∑B
b=1 V̂(b) −V

V

is computed, where the true variance V was
approximated through an independent set of
50, 000 simulations.

Results for two ratios are reported in Table 2.
In the top part of the table (case 1), we consider
the plug-in estimator t̂Y/t̂X of the proportion

of infants with a mother followed by a mid-
wife. In the bottom part of the table (case 2),
we consider the plug-in estimator t̂Z/t̂X of the
proportion of infants born by caesarean. As ex-
pected, the variance estimator V̂CCS is unbiased
for the CCS variance, and the variance estima-
tor V̂2d is unbiased for the two-stage sampling
variance. For the two-stage sampling, the es-
timator V̂2d,a gives a good approximation of
V̂2d when the sample size nM is small (5 or 25).
But it presents an important underestimation
when nM increases (320), especially when nD
is small (25) : -57 % for both cases. For the
CCS, in all cases, the relative biases of V̂2d and
V̂2d,a increase when nM increases or when nD
decreases. The relative bias of V̂2d,a is always
greater than the relative bias of V̂2d. In case
2, for all samples sizes, the relative biases are
larger than in case 1. In this case, the variable
Number of infants born by caesarean that we use
presents an important day variability. The
approximation of V̂CCS by V̂2d or V̂2d,a, which
captures principally maternity effect, is there-
fore not appropriate. In case 1, the day effect
(of Yik) is not as strong as for case 2, and the
relative biases are therefore smaller.

Table 2: Comparison between variance estima-
tors of the estimated ratio for CCS and two-
stage sampling (2d)

nM 5 25 320 25 320
nD 5 25 25 320 320

Case 1: t̂Y/t̂X

CCS
RBmc

(
V̂CCS

)
0 0 -1 -1 -1

RBmc

(
V̂2d
)

1 -1 -16 -1 -5
RBmc

(
V̂2d,a

)
-0 -5 -64 -1 -18

RBmc

(
V̂2d
)

-0 0 -1 -1 0
2d RBmc

(
V̂2d,a

)
-1 -4 -57 -2 -13

Case 2: t̂Z/t̂X

CCS
RBmc

(
V̂CCS

)
-2 1 -0 -1 1

RBmc

(
V̂2d
)

-28 -63 -96 -16 -83
RBmc

(
V̂2d,a

)
-29 -65 -98 -17 -85

RBmc

(
V̂2d
)

-0 -1 -1 0 -0
2d RBmc

(
V̂2d,a

)
-1 -5 -57 -0 -13

In the two-stage sampling design case, this
simulation study recalls that the variance esti-
mator V̂2d,a is a fair approximation for V̂2d only
if the first stage sampling rate is small. The
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results also indicate that it seems hazardous
to approximate a CCS variance estimator by a
two-stage sampling variance estimator with a
first stage on the maternity population. The
behaviour of this simplified estimator depends
on the importance of the day effect contained
in the interest variable, and also depends on
the sample sizes. In the ELFE case (nM = 320
and nD = 25), the underestimation is very high
and its use is therefore not recommended. In
Juillard et al. (2016), some alternative variance
estimators are studied and proposed for a CCS
design.

All the results of this paper are reproducible
using the supplementary files which contain
data and programming codes.
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6. Appendix

6.1. Models used to generate the variables

In the dataset delivered with this article, the
count variable Xik is randomly generated by a
Poisson distribution with parameter Pik, gener-
ated according to the model

200 + σ1Ui + σ2Vk + σ3Wik (9)

where Ui, Vk and Wik are independently gen-
erated with a distribution N(0, 1) and with
σ1 = 2 and σ2 = σ3 = 0.2.
Conditionally to the value of xik, the variable
Yik (respectively Zik) is a binomial variable of
parameters xik and pY

ik (respectively pZ
ik). The

probabilities pY
ik and respectively pZ

ik are depen-
dent on i and k:

pY
ik =

eβAik

1 + eβAik

pZ
ik =

eβBik

1 + eβBik

where the variable Aik (respectively Bik) is
generated according to the model (9) with
σ1 = σ2 = σ3 = 0.2 (respectively σ2 = 2,
σ1 = σ3 = 0.2) and β is chosen in order to
the average probability is 0.3.

6.2. Term by term variance estimation for two-
stage sampling

The variance in (1) may be unbiasedly esti-
mated term by term by

V̂2d
(
t̂Y
)

= V̂PSU
(
t̂Y
)
+ V̂SSU

(
t̂Y
)

where

V̂PSU
(
t̂Y
)

= V̂1
PSU

(
t̂Y
)
− V̂2

PSU
(
t̂Y
)

,

V̂SSU
(
t̂Y
)

=

(
NM
nM

)2

∑
ui∈SM

N2
i

(
1
ni
− 1

Ni

)
s2

Yi◦

V̂1
PSU

(
t̂Y
)

= N2
M

(
1

nM
− 1

NM

)
s2

Ŷ◦•
,

V̂2
PSU

(
t̂Y
)

=
N2

M
nM

(
1

nM
− 1

NM

)
∑

ui∈SM

N2
i

(
1
ni
− 1

Ni

)
s2

Yi◦
.

6.3. Analogy between two-stage sampling and
one-way ANOVA: formula details

Analysis of variance (ANOVA) uses the parti-
tioning of sums of squared deviations. For
one-way ANOVA, the total sum of squares
SST = ∑ui∈UM ∑k∈ui

(Yik − Ȳ••)
2 may be writ-

ten as

SST = SSM + SSE.

We have

SSM = ∑
ui∈UM

∑
k∈ui

(Ȳi• − Ȳ••)
2

the explained sum of squares (a.k.a. the sum
of squares between classes), where Ȳ•• =
N−1 ∑ui∈UM ∑k∈ui

Yik is the population mean
and Ȳi• = N−1

i ∑k∈ui
Yik is the mean inside the

Primary Sampling Unit ui. Also,

SSE = ∑
ui∈UM

∑
k∈ui

(Yik − Ȳi•)
2

denotes the residual sum of squares (a.k.a.
sum of squares within classes).

In what follows, the factor, which is the categor-
ical variable used to explain Y, is the belonging
to one particular PSU ui (NM modalities). The
total number of cases is N = ∑ui∈UM

Ni. We
consider the {SI,SI} sampling case, and assume
for simplicity that all the PSUs are of the same
size Ni = ND, and that the same sample size
ni = nD is used inside any selected PSU. In
this case, we have

SSM =
NM − 1

ND
S2

Y◦•

SSE = (ND − 1) ∑
ui∈UM

S2
Yi•

.

Now, we use ANOVA on the sample SM × SD.
The total number of cases is n = nM × nD, and
we denote

ssT = ∑
ui∈SM

∑
k∈Si

(
Yik − ˆ̄Y••

)2

= ssM + ssE,
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where

ssM = ∑
ui∈SM

∑
k∈Si

(
ˆ̄Yi• − ˆ̄Y••

)2

ssE = ∑
ui∈SM

∑
k∈Si

(
Yik − ˆ̄Yi•

)2

with ˆ̄Yi• = 1
nD

∑ui∈SD
Yik the estimated

population mean inside ui and ˆ̄Y•• =
1
n ∑ui∈SM ∑k∈Si

Yik the estimated population
mean.

6.4. Analogy between CCS and two-way ANOVA:
formula details

For a two-way ANOVA without replica-
tion, the total sum of squares SST =

∑ui∈UM ∑k∈ui
(Yik − Ȳ••)

2 may be written as

SST = SSM + SSD + SSE.

The total number of cases is N = NM × ND.
We have

SSM = ND ∑
i∈UM

(Ȳi• − Ȳ••)
2

the sum of squares explained by the belong-
ing to one particular unit i (NM modalities),
where Ȳ•• = 1

N ∑i∈UM ∑k∈UD
Yik is the popula-

tion mean and Ȳi• =
1

ND
∑k∈UD

Yik is the mean
inside the unit i. Then, we have

SSD = NM ∑
k∈UD

(Ȳ•k − Ȳ••)
2

the sum of squares explained by the belonging
to one particular unit k (ND modalities), where
Ȳ•k = 1

NM
∑i∈UM

Yik is the mean inside the unit
k. Also,

SSE = ∑
i∈UM

∑
k∈UD

(Yik − Ȳi• − Ȳ•k + Ȳ••)
2

denotes the residual sum of squares.

Now, we use ANOVA on the sample SM × SD.
The total number of cases is n = nM × nD, and
we denote

ssT = ∑
i∈SM

∑
k∈SD

(
Yik − ˆ̄Y••

)2

= ssM + ssD + ssE,

where

ssM = ∑
i∈SM

∑
k∈SD

(
ˆ̄Yi• − ˆ̄Y••

)2

ssD = ∑
i∈SM

∑
k∈SD

(
ˆ̄Y•k − ˆ̄Y••

)2

ssE = ∑
i∈SM

∑
k∈SD

(
Yik − ˆ̄Yi• − ˆ̄Y•k + ˆ̄Y••

)2

with ˆ̄Y•k = 1
nM

∑i∈SM
Yik the estimated popula-

tion mean inside the unit k, ˆ̄Yi• =
1

nD
∑i∈SD

Yik
the estimated population mean inside the unit
i and ˆ̄Y•• = 1

n ∑i∈SM ∑k∈SD
Yik the estimated

population mean.

6.5. Term by term variance estimation for CCS

A term by term unbiased estimator of the vari-
ance of t̂Y in formula (7) is

V̂CCS
(
t̂Y
)

= V̂1
(
t̂Y
)
+ V̂2

(
t̂Y
)
+ V̂3

(
t̂Y
)

with

V̂1
(
t̂Y
)

= V̂D
(
t̂Y
)
− V̂E

(
t̂Y
)

V̂2
(
t̂Y
)

= V̂M
(
t̂Y
)
− V̂E

(
t̂Y
)

V̂3
(
t̂Y
)

= V̂E
(
t̂Y
)

where V̂D
(
t̂Y
)
, V̂M

(
t̂Y
)

and V̂E
(
t̂Y
)

are done
in formula (8).
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