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We consider the problem of areal level land use classification from the information provided
by point level databases such as the area frame surveys (American NRI survey, EUROSTAT
Lucas survey, French Teruti-Lucas survey) and easily accessible covariates. An exploratory
analysis emphasizes the link between the areal level prediction error and a measure of difficulty
of prediction given by the Gini-Simpson impurity index. We provide a methodology and an R
code for allowing to explore the quality of an areal frame survey by generating synthetic data.
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1. Introduction

In order to gather information about land
use, many countries, or groups of countries
devise area frame surveys. This is the case
for example for the United States Department
of Agriculture NRI database1, for the EU-
ROSTAT LUCAS survey2 and for the French
Teruti-Lucas database3. They consist in lists of
parcels where observation of land use is per-

formed. One common feature of these surveys
is that the distribution of the sample locations
is sparse and does not fill regularly the space.
From this point level information, one usu-
ally tries to derive areal level predictions for a
partition of the space which may correspond
to administrative units or to regular meshes.
Several solutions for this process are discussed
in Chakir et al. (2016b).

1https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Advanced_Topics/AREA%
20FRAME%20DESIGN.pdf

2http://ec.europa.eu/eurostat/web/lucas/overview
3http://agreste.agriculture.gouv.fr/enquetes/territoire-prix-des-terres/teruti-lucas-utilisation-du/
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This classification problem usually involves
three steps: the choice of a point level clas-
sification model, the estimation of posterior
probabilities for each category of land use
at the areal level and the prediction of areal
land use from these estimated probabilities.
In Chakir et al. (2016a, 2017) a classification
model is constructed to predict land use at
point level in five categories (urban, farming,
forests, pastures and natural land) with the
Teruti-Lucas database using easily accessible
covariates in the Midi-Pyrénées region. Syn-
thetic data sets are later on simulated with this
data driven model in Chakir et al. (2016b) in
order to compare the prediction strategies at
areal level and evaluate the quality of the area
frame survey. In Chakir et al. (2016b), it is
demonstrated with synthetic data sets that the
prediction error at point level is essentially due
to the mean distance between the observed
land use and the corresponding true probabil-
ity, later on called response error. The purpose
of the present paper is to present a detailed
exploratory analysis of the prediction errors for
one of these synthetic data sets. A particular
objective is to link the size of the prediction
errors with the Gini-Simpson impurity index
as a measure of the local difficulty of predic-
tion and thus characterize situations where
prediction is difficult. This link is explored
in detail at the point level and at the areal
level. By supplying our R code together with
the synthetic data, another aim of this work is
to provide some tools that could be used for
evaluating the quality of an area frame survey
design (using synthetic data) or comparing dif-
ferent classification methods in the framework
of land use classification problems.

Section 2 presents the prediction error (mean
distance between the observed and predicted
land use) at point level and its decomposition
into four terms. Our synthetic data set together
with the data generating process are described
in section 3. In Section 4, we analyze the dis-
tribution and spatial pattern of the Data Gen-
erating Process (DGP) probabilities as well as
the corresponding Gini-Simpson indices. In

Section 5, we first present descriptive statistics
for the absolute and relative response error at
point level and analyze their relationship with
the corresponding Gini-Simpson indices. We
then turn attention to the same questions but
at areal level. We conclude in Section 6.

2. Point level prediction

The classification problem we consider con-
sists in predicting the land use categorical vari-
able Ui at location i (with K levels) based on
the observation of this same categorical vari-
able and a set of covariates at a given set
of locations. The theoretical vector of prob-
abilities to observe the different categories k
(k = 1, · · · , K) at location i is given by the vec-
tor pi = (pi1, · · · , pi5) where pik = P(Ui = k |
Xi = xi).
The model we get after fitting the classifica-
tion tree to the initial data, pi = f (xi), links
the probability vectors of land use at location
i, pi = (pi1, · · · , pi5), with a set xi of covariates
observed at location i. Let us define the risk
R(h) of a classification rule h(X) to be the mis-
classification rate R(h) = EX,U(1(h(X) 6= U).
Given fitted probabilities p̂i, one could envi-
sion predicting the land use categorical vari-
able Ui at location i by random draw from
a multinomial distribution with parameter p̂i.
A classical result shows that this is not opti-
mal in the following sense. If, for k = 1 to
K, momentarily dropping the location index i,
pk(x) = P(U = k | X = x) is the conditional
probability of observing land use k, the risk of
a prediction rule h(X) satisfies

1− R(h) =
K

∑
k=1

EX,U(1(h(X) = k)1(U = k)) (1)

=
K

∑
k=1

EXEU|X(1(h(X) = k)1(U = k)) (2)

=
K

∑
k=1

EX(1(h(X) = k)pk(X)) (3)

From this last expression, it is clear that the rule
that minimizes this risk, classically called the
Bayes classifier, is defined by Û∗ = h∗(x) = j∗,
for j∗ = arg maxK

k=1 pk(x) which means that it
is the rule that assigns the category for which
the probability is maximum. It is then easy to
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see that the corresponding risk is given by

R(h∗) = 1−EX

(
K

max
k=1

pk(X)

)
.

For comparison, it is easy to establish that the
risk of a multinomial random draw prediction
hr(X) is given by

R(hr) = 1−EX

(
K

∑
k=1

pk(X)2

)
.

It is easy to check that ∑K
k=1 pk(X)2 ≤(

maxK
k=1 pk(X)

) (
∑K

k=1 pk(X)
)
= maxK

k=1 pk(X).
Note that the second risk is related with the so-
called Gini-Simpson impurity index classically
used in classification trees (see Section 4).

For the error computation in the sequel, instead
of using the U random variable for land use,
we will encode it using K dummies as follows:
dik = 1 if land use k (k = 1, . . . , K) is obtained
at location i and dik = 0 otherwise. The cor-
responding optimal prediction U∗ is similarly
encoded by d̂ik.
Because we will focus later on areal level pre-
dictions (rather than point level), we change
our error criterion and replace the misclas-
sification rate by a classical mean square er-
ror of prediction criterion EX ∑n

i=1(d̂ik − dik)
2.

Chakir et al. (2016b) show that the point level
prediction error for category k measured by
EX ∑n

i=1(d̂ik − dik)
2 can be decomposed into

four terms:

• EX ∑n
i=1(dik − pi)

2 which represents the
mean distance between the observed land
use and the corresponding true probabil-
ity will be called the response error,

• EX ∑n
i=1(d̂ik − p̂i)

2, the estimated re-
sponse error, which represents the mean
distance between the predicted land use
and the corresponding estimated proba-
bility,

• EX ∑n
i=1( p̂i − pi)

2, the estimation error,
which represents the mean distance be-
tween the estimated probability and the
true probability (quality of the model fit),

• a remainder term.

It is shown that the dominant term is the re-
sponse error which means that even if one had
the knowledge of the true probabilities, there is
this incompressible error due to the fact that we
observe and predict something discrete using a
continuous probability as parameter. This error
is going to be the focus of our present study
and we will not consider further the estimated
probabilities.

3. Data

3.1. The synthetic data set

We consider the former Midi-Pyrénées region
which was, before the French territorial reform
in December 2015, the largest region in France
with 8.3% of the whole territory and 3020
municipalities in January 2013. It is a quite
rural region with 4.5% of the metropolitan
population in 2011 but presents a diversity in
land uses. Toulouse is the major urban center,
there are large farming areas in the middle, the
Pyrénées mountains in the South, and mainly
pastures and forests in the North.

The initial point level locations are the Teruti-
Lucas (T-L) locations and the areal level corre-
sponds to T-L “segments”, as detailed below.
Teruti-Lucas is conducted each year since 1982
by the “Service de la Statistique et de la Per-
spective” of the French Ministry of Agriculture.
It is the French part of the LUCAS (Land Use
and Coverage Area frame Survey) survey con-
ducted by Eurostat which gathers harmonized
data on land use/cover in the European Union.
Since 2005, the T-L survey contains informa-
tion about the land use pattern on “segments”
containing 10 points used to collect the data
each year (see Figure 1).
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Table 1: Data sources.

Name Geographical level Source Year Unit

CLC2 zones (>25 ha) Corine Land Cover 2006 -
Altitude grid (250 m) BDAlti (IGN) - meters
Land and empty meadow price 32 NRA Agreste 2010 actual euros/ha
Population density grid (200 m) Insee 2010 inhabitants/km2

Figure 1: Areal level grid (in black) and points
(Teruti-Lucas locations in red) in the Toulouse
area.

Following the initial spacing of 300m between
T-L points, we constructed a fine grid (point
level) so that each “segment” contains 200 loca-
tions vs. 10 T-L locations, for a total of 502205
points (vs. 25317 T-L locations). The areal
level is constructed so that each cell contains
a unique T-L “segment” and so as to tile the
Midi-Pyrénées territory. Its squares are cen-
tered at the barycenter of the 10 points of the
T-L “segment” (see Figure 1) and their sides
have a length of 4.2 kilometers. The areal level
grid comprises 2579 such squares. Note that
due to border effects, some areal units contain
less than 200 locations, with a minimum of 32.
The target variables dik we generate below give
the land use at each location i as measured
by the Teruti-Lucas “physical occupation” of
the land and recoded in the following five
categories: urban, farming, forests, pastures,

natural land. More details about Teruti-Lucas
can be found in Chakir et al. (2016b, 2017).

Covariates have been selected from free and
easily accessible data bases (see Table 1) that
are available at several different scales. We
provide four variables: CLC2, altitude, popula-
tion density and land price at each of the 502205
points. In Chakir et al. (2016b, 2017), more
covariates were taken into account but they
either require an online subscription (meteo-
rological data) or are not freely available (soil
composition data) and cannot be provided in
the present paper.
From the four covariates, we generate the data
set by using a classification tree obtained with
the CART algorithm (Breiman et al., 1984) us-
ing the Gini-Simpson impurity index and a
pruning step. The tree is given by Figure 2
(see Chakir et al., 2016b, 2017, for more details).
Then we calculate and provide in the data base
the probability vector pi whose coordinates
correspond to each of the 5 land uses (urban,
farming, forests, pastures, natural land). Us-
ing a multinomial random draw at each of the
502205 locations i, with parameter pi, we also
generate and provide the values of the categor-
ical variable Ui from which it is easy to derive
the target variables dik, k = 1, . . . , 5.

3.2. The DGP probabilities

Due to the nature of the model (classification
tree), the DGP probabilities pik are discrete
with 11 different values (see Figures 2, 3 and
4).
More precisely, the land use forests corre-
sponds to one terminal node, urban, farming
and natural land to two nodes and pastures to
four nodes. Urban use and natural land are the
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Figure 2: Classification tree chosen for the DGP.

Figure 3: Bar charts of pik.
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Figure 4: Empirical cumulative functions of pik.

Urban Farming Forests

Pastures Natural land

pgk

[0−0.2[
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Figure 5: DGP probabilities p̄gk.
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land uses with the lowest probabilities. Most
of them are below 0.10 with 95.4% of the values
less than 0.072 for pi1 and 90.0% of the values
less than 0.084 for pi5. Forests, farming and
pastures have multimodal distributions with
23.7% of the values equal to 0.726 for farming,
26.0% of the values equal to 0.822 for forests
and 21.9% of the values equal to 0.570 for pas-
tures. It is not surprising to observe that only
few points are concerned with high probabili-
ties of urban and natural land uses while there
exists a large number of points where the prob-
ability of forests and farming and to a lesser
extent pastures are quite high.
The maps of Figure 5 show the spatial pattern
of the aggregated land use probabilities p̄gk at
the areal level.

4. Impurity of the DGP probabili-
ties: the Gini-Simpson index

For a population of individuals classified into
K categories, impurity indices are used in
many fields for example in ecology for measur-
ing biodiversity, and in economics (Herfindahl
index) to measure competition. In the land
use classification problem, we want to measure
how homogeneous or diverse land use is at a
given point or in a given region. For a vector
of probabilities (p1, · · · , pK), the Gini-Simpson
impurity index (Simpson, 1949) is defined by
gs = ∑K

k=1 pk(1 − pk) = 1 − ∑K
k=1 p2

k where
pk is the probability of category k. The vec-
tor of probabilities is said to be pure if one
probability is very high and all others are low,
corresponding to a low gs index. It is said to
be impure if all categories have similar proba-
bilities, corresponding to a high gs index. Note
that the related Gini-Simpson index 1− gs is
equal to the probability that two individuals
taken at random from the data set of interest
are of the same category. In statistics, the
Gini-Simpson impurity index is also used for
classification trees (e.g. Therneau et al., 2014)
under the name of Gini impurity index (not to
be confused with the Gini concentration index).
It is always between 0 and 1 and equal 0 if one
probability is equal to 1 and the others are 0.

In the case of a uniform distribution between
the classes, pk = 1/K, k = 1, . . . , K, the Gini
index is equal to (K− 1)/K.

At point level, we denote this index by gsi =
1−∑K

k=1 p2
ik for point i.

At the areal level with squares Gg, we use
gsg = 1

#Gg
∑i∈Gg gsi, the average of the point

level gsi for locations i inside square number
g.
Because we are convinced that classification is
going to be more difficult when there is diver-
sity, i.e. impurity, we would like to relate the
Gini-Simpson impurity index with the classifi-
cation error and hence with the response error
which is the main component of the classifica-
tion error.

Figure 6: Bar chart of point level Gini-Simpson
impurity index (gsi).

We are first going to analyze the impurity of
the vectors of probabilities generated by our
model. As for the DGP probabilities, values of
gsi correspond to terminal nodes of the clas-
sification tree of the DGP (see Figure 2) and
define a discrete variable with a finite number
of values less than or equal to the number of
terminal nodes, which gives 11 values in our
case. Figure 6 presents the distribution of the
gsi across locations. As low values of the index
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correspond to purity, we are mostly interested
in the four smallest values of gsi which con-
stitute homogeneous groups in terms of land
uses.

Figure 7: Boxplots of gsi by land use.

Figure 8: Map of gsg, the mean of gsi at areal
level.

Table 2: Characteristics of groups according to the Gini-Simpson index value (gsi).

gsi Frequency Principal land uses

0.314 130532 82.1% of forests
0.370 14376 77.4% of natural lands
0.450 119010 72.6% of farming
0.462 13158 72.0% of urban
0.509 12200 62.2% of pastures and 31.6% of natural lands
0.604 10167 56.0% of pastures and 27.4% of farming
0.619 109798 57.1% of pastures, 17.3% of forests and 13.3% of farming

0.682 to 0.721 92964 mix of all uses

4.1. Descriptive analysis

Using the bar chart of Figure 3, we make
groups of gsi values and Table 2 details the
main land uses observed in each of these
groups.
The first group defined by gsi = 0.314 is
the largest and the purest, it is composed by
82.1% of forests. The second group defined
by gsi = 0.370 is also very pure with 77.4%
of natural lands. The third and fourth groups
(gsi = 0.450 and gsi = 0.462 respectively) are

quite pure with 72.6% of farming and 72.0%
of urban use respectively, note that the third
group is one of the largest. The other groups
have at least two main land uses and are more
and more impure.

Let us now examine the relationship between
the distribution of the Gini-Simpson index and
land use with Figure 7 which presents the dis-
tribution of gsi by land use. We emphasize the
notable behavior of the forests type which is
mainly associated to low Gini-Simpson index
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and hence low diversity. At the other extreme,
the pastures type is very often encountered
with other uses.
For mapping purposes, we use the cell levels
averages gsg of the Gini-Simpson’s indices. Fig-
ure 8 compared to Figure 5 confirms that the
mean of the Gini-Simpson impurity index is
low (which means homogeneity or purity) in
zones with very high proportion of a unique
land use (forests or natural land) and high
(which means heterogeneity or impurity) in
zones with medium probabilities of several
land uses.

4.2. Spatial analysis

In order to analyze the patterns of impurity,
it is now natural to turn attention to the spa-
tial distribution of the impurity index and to
analyze its spatial autocorrelation using the
Moran index (Cliff and Ord, 1981) and local
indicators of spatial association (Anselin, 1995).
For this purpose, we need to define a neigh-
borhood matrix and we consider below the
row-standardized 8-nearest neighbours matrix,
which corresponds to a queen contingency ma-
trix (Cliff and Ord, 1981). The Moran test
(“free sampling model” version) is highly sig-
nificant and the permutation test (“randomiza-
tion model” version) is significant at the level

1%, thus we conclude that the Gini-Simpson
impurity index presents a significant level of
positive spatial autocorrelation. The Moran
plot is presented in Figure 9.
The normalized Moran index is equal to 0.589.
Figure 10 colors the map according to which
quadrant of the Moran plot (high-high, low-
low, high-low and low-high) the averaged Gini-
Simpson index belongs and it shows that the
Gini-Simpson index is highly clustered.
Figure 11 shows zones of significant positive lo-
cal spatial association (LISA). Cold spots (zones
with high positive LISA and low values of im-
purity index - i.e. purity - for segments and
their neighbors, in green) are those with very
high proportions of forests or natural land sit-
uated mainly in the South. Hot spots (zones
with high positive LISA and high values of im-
purity index - i.e. impurity - for segments and
their neighbors, in red) are zones where sev-
eral land uses are observed with three princi-
pal patterns observed at several places: i) high
proportion (40-60%) of pastures and medium
proportion (20-40%) of forests in Ariege, most
of Aveyron and some part of Lot, ii) medium
proportions (20-40%) of forests and pastures
in West of Aveyron and some part of Lot, and
iii) medium proportion (20-40%) of farming,
forests and pastures in Tarn-et-Garonne, South
of Lot and Gers.

Figure 9: Normalized Moran scatterplot of
the Gini-Simpson index gsg.

Figure 10: Clusters of the Gini-Simpson in-
dex gsg.
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Figure 11: Segments with significant positive
local spatial association (LISA) for the Gini-
Simpson index gsg.

5. Analysis of the response error

5.1. Analysis of the response error at point level

The absolute error at point level between pik
and dik is defined by |dik − pik|. As dik is
a dummy variable, the absolute error equals
1− pik if land use k is observed (i.e. if dik = 1)
and pik otherwise (i.e. if dik = 0). Our analy-
sis of this error includes descriptive statistics
(see Table 3) and parallel boxplots of this er-
ror for the different values of the point level
Gini-Simpson impurity index (see Figure 12).
For a given location i, the vector di has five
coordinates, four equal to 0 and one equal to 1
hence we have more points in the first part of
Table 3. We observe that the absolute response
error quartiles are higher when dik = 1 than
when dik = 0. This can be explained by the
fact that many probabilities are quite small
and, at locations where dik = 1, the value
1− pik becomes quite large compared to pik.
In particular, the conclusions for urban and
natural land uses are the same because the
probabilities of these two categories are very
small (see Figure 4): the absolute response
errors are the smallest when the land use is
not observed (dik = 0) at least until the third

quartile and these errors are the highest when
the land use is observed (dik = 1). For the lo-
cations where the forests land use is observed,
the minimum, first quartile and median values
of the absolute response error are by far the
smallest because there are quite many loca-
tions where the probability of forests is very
large (see Table 3) compared to other land uses.

The relative error between pik and dik is defined
by |dik − pik|/pik. As dik is a dummy variable,
the relative error equals 1/pik − 1 if the land
use k is observed (i.e. if dik = 1) and 1 other-
wise (i.e. if dik = 0). Descriptive statistics of
this error at point level can be found in Table 3.
Overall, the relative errors are rather variable
with mean values close to 2 for farming, forests
and pastures, and of the order of 10 for urban
and natural land which are often associated
with small probabilities. Note that the relative
error for urban use reaches a maximum of 323,
due to a point with a very low probability of ur-
ban but for which the multinomial draw gives
urban use.
Figure 12 analyzes the link between the re-
sponse error and the impurity by category of
land use in detail. The rows correspond to the
observed land use (dik = 1 for k = 1, . . . , 5) and
the columns to the response error (|dik − pik|
for k = 1, . . . , 5). First note that most of the
errors are constant because there is a unique
value of the Gini-Simpson index which results
in horizontal lines instead of boxplots.
Let us compare the graphs in a same column,
the first one for example. In the first row of
column one, we have an observed land use
which is urban (di1 = 1) and the error is on
the urban category. We note that there is one
boxplot showing low errors while the remain-
ing ones display large errors. The low error
boxplot corresponds to the value 0.462 of the
Gini-Simpson index with points in a rather
pure environment, where the main land use
is urban and hence a value of pi1 close to 1
which explains the low error. On the contrary,
for the other values of the Gini-Simpson index
which correspond to points in a non purely
urban environment, the error is large because
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Table 3: Descriptive statistics of absolute and relative response error at point level.

n Minimum Q1 Median Mean Q3 Maximum

Absolute response error

urban |di1 − pi1| when di1 = 0 464964 0.00 0.02 0.06 0.06 0.07 0.72
farming |di2 − pi2| when di2 = 0 370122 0.00 0.02 0.07 0.16 0.13 0.73
forests |di3 − pi3| when di3 = 0 347114 0.06 0.06 0.17 0.17 0.18 0.82
pastures |di4 − pi4| when di4 = 0 372394 0.05 0.08 0.12 0.20 0.26 0.62
natural land |di5 − pi5| when di5 = 0 454226 0.03 0.03 0.05 0.07 0.06 0.78

urban |di1 − pi1| when di1 = 1 37241 0.28 0.28 0.93 0.73 0.94 1.00
farming |di2 − pi2| when di2 = 1 132083 0.27 0.27 0.27 0.44 0.59 0.98
forests |di3 − pi3| when di3 = 1 155091 0.18 0.18 0.18 0.38 0.81 0.94
pastures |di4 − pi4| when di4 = 1 129811 0.38 0.43 0.43 0.58 0.75 0.95
natural land |di5 − pi5| when di5 = 1 47979 0.22 0.60 0.69 0.69 0.94 0.97

Relative response error

urban |di1 − pi1|/pi1 when di1 = 1 37241 0.39 0.39 13.11 12.40 14.80 323.00
farming |di2 − pi2|/pi2 when di2 = 1 132083 0.38 0.38 0.38 2.60 1.46 45.20
forests |di3 − pi3|/pi3 when di3 = 1 155091 0.22 0.22 0.22 2.23 4.29 16.05
pastures |di4 − pi4|/pi4 when di4 = 1 129811 0.60 0.75 0.75 2.89 2.96 18.12
natural land |di5 − pi5|/pi5 when di5 = 1 47979 0.29 1.50 2.18 9.47 16.26 30.12

the probability pi1 is low. For the other rows of
column one, the observed land use is no longer
urban (di1 = 0) and the errors corresponding
to the 0.462 of the Gini-Simpson index are large
because pi1 is large. On the contrary, for the
other values of the Gini-Simpson index which
correspond to points in a non purely urban en-
vironment, the error is low because pi1 is low
and di1 = 0. The columns urban and forests
behave similarly whereas for pastures for ex-
ample, we simultaneously see errors which are
neither very low nor very large because the
pastures are situated in more heterogeneous
(impure) regions (see also Chakir et al., 2016b,
for a comparison between the forests and pas-
tures land use).

More generally, when a land use is observed,
the error for this category is low at locations
where this category is mainly observed and
high at other locations, whereas when it is not
observed, the opposite results are found.

Another plot for exploring the absolute re-
sponse error is proposed by Haaf et al. (2014)
and can be found in Chakir et al. (2016b) for
our data set of interest. It is called the Cumula-
tive Distribution Function of Error Tolerance
(CDFET) and consists in the empirical cumu-

lative distribution function of the response
error for each land use. The percentage of
points with absolute response error less than
a specified threshold is plotted for each land
use and we note that, for low values of the
error threshold, the curves are very similar
with small errors for approximately 35% of the
points. These good predictions correspond to
homogeneous zones with either low or high
probabilities. This plot also confirms a differ-
ent behavior of the urban and natural land
uses compared with farming, forests and pas-
tures. For these last land uses, the presence of
medium probabilities causes a deterioration of
the curve behavior.

In other words, the response error at point
level shows different patterns across land uses
and the analysis reveals that the larger errors
correspond to heterogeneous zones.

5.2. Analysis of the response error at areal level

At areal level, we consider two different ways
of aggregating the response errors. In the first
case we consider the average point level abso-
lute response error 1

#Gg
∑i∈Gg |dik − pik|. In the

second case we consider the difference between
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Figure 12: Absolute response error vs the Gini-Simpson impurity index gsi by observed land use
(rows) and by response error component (columns).
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Table 4: Descriptive statistics of the two types of absolute response error at areal level.

Minimum Q1 Median Mean Q3 Maximum

Average point level absolute response error

urban 1
#Gg

∑i∈Gg
|di1 − pi1| 0.00 0.08 0.11 0.11 0.13 0.39

farming 1
#Gg

∑i∈Gg
|di2 − pi2| 0.00 0.13 0.22 0.23 0.35 0.46

forests 1
#Gg

∑i∈Gg
|di3 − pi3| 0.09 0.18 0.25 0.24 0.29 0.41

pastures 1
#Gg

∑i∈Gg
|di4 − pi4| 0.08 0.24 0.29 0.30 0.35 0.49

natural land 1
#Gg

∑i∈Gg
|di5 − pi5| 0.03 0.09 0.11 0.13 0.14 0.43

Areal level absolute response error

urban |d̄g1 − p̄g1| 0.00 0.00 0.01 0.01 0.02 0.11
farming |d̄g2 − p̄g2| 0.00 0.01 0.01 0.02 0.03 0.11
forests |d̄g3 − p̄g3| 0.00 0.01 0.02 0.02 0.03 0.12
pastures |d̄g4 − p̄g4| 0.00 0.01 0.02 0.02 0.03 0.15
natural land |d̄g5 − p̄g5| 0.00 0.01 0.01 0.01 0.02 0.10

aggregated probabilities |d̄gk − p̄gk| where
dgk = 1

#Gg
∑i∈Gg dik and pgk = 1

#Gg
∑i∈Gg pik

and call it the “areal level absolute response
error”.

In comparison to Table 3, Table 4 shows that
the two types of areal level errors are lower
than point level errors. Areal level absolute
response error are very small for all categories
with maximum values between 0.10 and 0.15.
When averaging point level response errors,
there is not so much difference between the
land uses except for the urban and the natural
land uses which are associated with smaller
values.

The maps of Figure 13 plot the average point
level absolute response error and are quite sim-
ilar to those in Figure 5 where the aggregated
observed land uses are plotted. This confirms
the fact already noticed in Table 3 that the error
is larger when dik equals one than when dik is
zero because the probabilties are usually low.
It also confirms that the disaggregated level
leads to very poor results. Unlike the average
point level absolute response error (see Figure
13), Figure 14 does not show any spatial pat-
tern for the areal level absolute response errors.
We can however notice that errors on farming

and urban in a lesser extent are very low in the
south of the region where forests and natural
lands are very frequent.

On Figure 15, there is a positive trend for av-
erage point level response error for pastures
and farming. The error for these land uses is
lower when impurity is low which confirms
the point level analysis. No relationship be-
tween the areal level response error and the
Gini-Simpson impurity index can be found (see
Figure 16).

In Chakir et al. (2016b), the CDFET for the
areal level absolute response error is compared
with the CDFET for the average point level
response error. The comparison confirms once
more that the areal level response error is very
small and for all land uses.

In other words, the areal level absolute re-
sponse error is much lower than the average
point level response error. The impact of het-
erogeneity vanishes. These two points empha-
size the interest of giving results at aggregated
levels only. The reader can also refer to Chakir
et al. (2016b) for a discussion on the choice
of the aggregated level considering different
grids.
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Figure 13: Average point level absolute response error.

Figure 14: Areal level absolute response error (|d̄gk − p̄gk|).
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Figure 15: Average point level absolute response error ( 1
#Gg

∑i∈Gg |dik − pik|) versus aggregated
Gini-Simpson impurity index gsg.

Figure 16: Areal level absolute response error (|d̄gk − p̄gk|) versus aggregated Gini-Simpson
impurity index gsg.
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6. Conclusion

In the present paper, we propose a synthetic
data set generated by simulations with a model
fitted to the Teruti-Lucas data and analyse in
detail the response error when the land use
is defined in 5 categories. Several conclusions
can be derived from our study. The main one
is that the response error at point level is larger
in areas where the probabilities are quite simi-
lar (heterogeneous areas) and this fact can be
illustrated using the Gini-Simpson measure.
We also notice that the response error at point
level is often larger for the land use which is
observed than for the other land uses because
the probabilities are rarely above 50%. Finally,
aggregating the land uses is preferable in or-
der to reduce the error. Note that in Chakir
et al. (2016b), we even go further and advise
the data analyst not to calculate predictions at
the point level but aggregate directly the esti-
mated probabilities so that the response error
vanishes completely.
The covariates were only used in order to gener-
ate the data set but not for estimating a model
as in Chakir et al. (2016b, 2017). However, it
is possible to use the proposed data set for
comparing different classification methods (in
a data science challenge for instance) but also
for comparing different sampling designs with
the Teruti-Lucas systematic design for instance.
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